Inharmonicity table for <Hurdy> high string

  • Fundamental frequency:= 146.83 Hz (D). midi note: 50
  • Calculated for a string factor B= 4.33465E-5
  • Formula: f(n) = n .f(0). SQR( 1 + B.n^2)
  • with: B = E.mu.(Pi.r)^2 / (4.p.T.L^2)
  • E= Youngs modulus for the string material (2E11 Pa)
  • mu = mass per length (0.003848451 kg/m)
  • r = string radius (0.35mm)
  • p = density of the string material (7.3 kg/l)
  • T = string tension in Newton (calculated using Taylors law)
  • L = string length in meter (1.220 m)


Partial nr.: 1              real partial note: 50       Plato-Harmonic: 50          Dif= 0  cent    Dif= 0 Hz
Partial nr.: 2              real partial note: 62       Plato-Harmonic: 62          Dif= 0  cent    Dif= .03 Hz
Partial nr.: 3              real partial note: 69.02    Plato-Harmonic: 69.02       Dif= 0  cent    Dif= .09 Hz
Partial nr.: 4              real partial note: 74.01    Plato-Harmonic: 74          Dif= 1  cent    Dif= .2 Hz
Partial nr.: 5              real partial note: 77.87    Plato-Harmonic: 77.86       Dif= 1  cent    Dif= .4 Hz
Partial nr.: 6              real partial note: 81.03    Plato-Harmonic: 81.02       Dif= 1  cent    Dif= .69 Hz
Partial nr.: 7              real partial note: 83.71    Plato-Harmonic: 83.69       Dif= 2  cent    Dif= 1.09 Hz
Partial nr.: 8              real partial note: 86.02    Plato-Harmonic: 86          Dif= 2  cent    Dif= 1.63 Hz
Partial nr.: 9              real partial note: 88.07    Plato-Harmonic: 88.04       Dif= 3  cent    Dif= 2.32 Hz
Partial nr.: 10             real partial note: 89.9     Plato-Harmonic: 89.86       Dif= 4  cent    Dif= 3.18 Hz
Partial nr.: 11             real partial note: 91.56    Plato-Harmonic: 91.51       Dif= 5  cent    Dif= 4.23 Hz
Partial nr.: 12             real partial note: 93.07    Plato-Harmonic: 93.02       Dif= 5  cent    Dif= 5.49 Hz
Partial nr.: 13             real partial note: 94.47    Plato-Harmonic: 94.41       Dif= 6  cent    Dif= 6.98 Hz
Partial nr.: 14             real partial note: 95.76    Plato-Harmonic: 95.69       Dif= 7  cent    Dif= 8.71 Hz
Partial nr.: 15             real partial note: 96.97    Plato-Harmonic: 96.88       Dif= 8  cent    Dif= 10.71 Hz
Partial nr.: 16             real partial note: 98.1     Plato-Harmonic: 98          Dif= 10  cent    Dif= 13 Hz
Partial nr.: 17             real partial note: 99.16    Plato-Harmonic: 99.05       Dif= 11  cent    Dif= 15.59 Hz
Partial nr.: 18             real partial note: 100.16   Plato-Harmonic: 100.04      Dif= 12  cent    Dif= 18.49 Hz
Partial nr.: 19             real partial note: 101.11   Plato-Harmonic: 100.98      Dif= 13  cent    Dif= 21.74 Hz
Partial nr.: 20             real partial note: 102.01   Plato-Harmonic: 101.86      Dif= 15  cent    Dif= 25.35 Hz
Partial nr.: 21             real partial note: 102.87   Plato-Harmonic: 102.71      Dif= 16  cent    Dif= 29.33 Hz
Partial nr.: 22             real partial note: 103.69   Plato-Harmonic: 103.51      Dif= 18  cent    Dif= 33.71 Hz
Partial nr.: 23             real partial note: 104.48   Plato-Harmonic: 104.28      Dif= 20  cent    Dif= 38.5 Hz
Partial nr.: 24             real partial note: 105.23   Plato-Harmonic: 105.02      Dif= 21  cent    Dif= 43.72 Hz
Partial nr.: 25             real partial note: 105.96   Plato-Harmonic: 105.73      Dif= 23  cent    Dif= 49.39 Hz
Partial nr.: 26             real partial note: 106.66   Plato-Harmonic: 106.41      Dif= 25  cent    Dif= 55.53 Hz
Partial nr.: 27             real partial note: 107.33   Plato-Harmonic: 107.06      Dif= 27  cent    Dif= 62.15 Hz
Partial nr.: 28             real partial note: 107.98   Plato-Harmonic: 107.69      Dif= 29  cent    Dif= 69.27 Hz
Partial nr.: 29             real partial note: 108.61   Plato-Harmonic: 108.3       Dif= 31  cent    Dif= 76.92 Hz
Partial nr.: 30             real partial note: 109.21   Plato-Harmonic: 108.88      Dif= 33  cent    Dif= 85.1 Hz
Partial nr.: 31             real partial note: 109.8    Plato-Harmonic: 109.45      Dif= 35  cent    Dif= 93.84 Hz
Partial nr.: 32             real partial note: 110.38   Plato-Harmonic: 110         Dif= 38  cent    Dif= 103.15 Hz
Partial nr.: 33             real partial note: 110.93   Plato-Harmonic: 110.53      Dif= 40  cent    Dif= 113.04 Hz
Partial nr.: 34             real partial note: 111.47   Plato-Harmonic: 111.05      Dif= 42  cent    Dif= 123.55 Hz
Partial nr.: 35             real partial note: 112      Plato-Harmonic: 111.55      Dif= 45  cent    Dif= 134.68 Hz
Partial nr.: 36             real partial note: 112.51   Plato-Harmonic: 112.04      Dif= 47  cent    Dif= 146.45 Hz
Partial nr.: 37             real partial note: 113.01   Plato-Harmonic: 112.51      Dif= 50  cent    Dif= 158.87 Hz
Partial nr.: 38             real partial note: 113.5    Plato-Harmonic: 112.98      Dif= 53  cent    Dif= 171.97 Hz
Partial nr.: 39             real partial note: 113.98   Plato-Harmonic: 113.42      Dif= 55  cent    Dif= 185.76 Hz
Partial nr.: 40             real partial note: 114.44   Plato-Harmonic: 113.86      Dif= 58  cent    Dif= 200.26 Hz
Partial nr.: 41             real partial note: 114.9    Plato-Harmonic: 114.29      Dif= 61  cent    Dif= 215.47 Hz
Partial nr.: 42             real partial note: 115.35   Plato-Harmonic: 114.71      Dif= 64  cent    Dif= 231.43 Hz
Partial nr.: 43             real partial note: 115.78   Plato-Harmonic: 115.12      Dif= 67  cent    Dif= 248.14 Hz
Partial nr.: 44             real partial note: 116.21   Plato-Harmonic: 115.51      Dif= 70  cent    Dif= 265.62 Hz
Partial nr.: 45             real partial note: 116.63   Plato-Harmonic: 115.9       Dif= 73  cent    Dif= 283.89 Hz
Partial nr.: 46             real partial note: 117.04   Plato-Harmonic: 116.28      Dif= 76  cent    Dif= 302.96 Hz
Partial nr.: 47             real partial note: 117.45   Plato-Harmonic: 116.66      Dif= 79  cent    Dif= 322.85 Hz
Partial nr.: 48             real partial note: 117.84   Plato-Harmonic: 117.02      Dif= 82  cent    Dif= 343.57 Hz
Partial nr.: 49             real partial note: 118.23   Plato-Harmonic: 117.38      Dif= 86  cent    Dif= 365.13 Hz
Partial nr.: 50             real partial note: 118.62   Plato-Harmonic: 117.73      Dif= 89  cent    Dif= 387.56 Hz
Partial nr.: 51             real partial note: 118.99   Plato-Harmonic: 118.07      Dif= 92  cent    Dif= 410.87 Hz
Partial nr.: 52             real partial note: 119.36   Plato-Harmonic: 118.41      Dif= 96  cent    Dif= 435.07 Hz
Partial nr.: 53             real partial note: 119.73   Plato-Harmonic: 118.74      Dif= 99  cent    Dif= 460.17 Hz
Partial nr.: 54             real partial note: 120.09   Plato-Harmonic: 119.06      Dif= 103  cent    Dif= 486.2 Hz

Note: Partials higher than 32 are not implemented in the firmware for the <Hurdy> robot.

dr.Godfried-Willem Raes, 29.02.2008
Back to <Hurdy>