
June 2020

Get Ready for AI:
Tools to Help You
Get Started

https://www.element14.com/community/welcome?CMP=EBOOK-PRG-AI

2 www.element14.com/community

Table of Contents

02. What You Need to Know to Get Started

01. Introduction to AI

03. Tools to Help You Get Started

Platform vs Library

Devices for Inferencing

The History and Birth of the Neural Network

A Simple Predicting Machine

Classifying

Neurons

Following a Signal Through a Neural Network

Learning Weights from More Than One Node

Neural Network with Python

The Skeleton Code

Initializing the Network

Weights are the Heart of the Network

Querying the Network

Training the Network

The Complete Neural Network Code

AI Components

Knowledge

Reasoning

Problem Solving

Perception

Inference

Driving Intelligence with Big Data

Assessing Data with AI

https://www.element14.com/community/welcome?CMP=EBOOK-PRG-AI

3www.element14.com/community

AI Tools to Help You Get Started

Artificial Intelligence (AI) is a subset of computer science directed towards the development of

computers capable of actions usually done by humans. AI as a field of study first emerged during the

1950s, and initial successes included computers proving theorems and playing simple games. Neural

networks have subsequently emerged from the concept of intelligent biological computing and have

become an important part of AI. This eBook will discuss the basic concepts of AI, including a discussion

on Neural Networks, and concluding with a list of AI tools anyone can use to get started.

element14 is a Community of over 700,000 makers, professional engineers, electronics enthusiasts, and

everyone in between. Since our beginnings in 2009, we have provided a place to discuss electronics, get

help with your designs and projects, show off your skills by building a new prototype, and much more.

We also offer online learning courses such as our Essentials series, video tutorials from

element14 presents, and electronics competitions with our Design Challenges.

element14 Community Team

https://www.element14.com/community/welcome?CMP=EBOOK-PRG-AI

Get Ready for AI: Tools to
Help You Get Started
CHAPTER 1 Introduction to AI

Artificial intelligence (AI) is a computer science subfield

directed towards the development of computers

capable of actions usually done by humans.

AI’s promise, until now, has far outstripped its

deliverability. The latest versions of AI are, however,

different. The dissimilarities can be summed up in five

drivers: increased computational resources, explosive

data growth, focus on particular problems, knowledge

engineering, and alternative reasoning models.

The following are the components of AI.

Knowledge: Part of AI which deals with

comprehending, designing, and implementing

methods of representing information collected from

the environment and stored in computers. The agent

programs can now make sense of the information and

plan future activities. They can also solve problems in

areas that generally require human expertise.

Reasoning: A software system that makes decisions

from available knowledge using logical methods like

presumption and training. The system is termed as

Reasoning. Interactive and batch processing are

two modes of reasoning. An Interactive system can

interface with the user to ask helpful questions and

helps the user to guide the reasoning process. Batch

systems take into account all the existing information

simultaneously and produce the optimum answer

4 www.element14.com/community

https://www.element14.com/community/welcome?CMP=EBOOK-PRG-AI

without feedback or guidance.

Learning: gaining knowledge or skill by studying,

being taught, practicing, or undergoing any action.

Problem Solving: A process in which one first

observes and then attempts to reach a preferred

solution from a present situation, by adopting a path

obstructed by known hurdles or unknown ones. The

process encompasses decision making, or selecting

the optimal alternative to reach the desired goal.

Perception: Technique of obtaining, comprehending,

selecting, and consolidating sensory information.

Perception and sensing are intermeshed. Sensory

organs support perception. In relation to AI, perception

refers to data acquisition by sensors.

Inference: A suitable computational framework for

perception and necessary computations. Initially,

the neural network goes through training similar

to a human brain learning a job. Based on what it

has learned, the trained neural network is used to

recognize application information like blood disease,

images, spoken words, and so on. The system then

infers things about new data based on prior learning,

and this process is known as inference.

Driving Intelligence with Big Data: AI systems

must be demystified to construct a framework for

comprehending new systems. AI systems assess,

infer, and predict. These systems use data to transact,

click links, network connections, and query, among

other actions. Big Data enables simple learning

systems to filter a signal from the noise. Processing

and parallelism then blend to synthesize results.

Assessing Data with AI: Consumer systems assess

us. Amazon, for example, collates a meticulous

picture to compare us against similar customers and

create a predictions source. This is transactional

assessment data: what customers touch and what

they buy. Amazon’s recommendation engines

use this information to build profiles and make

recommendations. Profile data, however, is only a

part of the larger picture. This information includes

categories that cluster objects (“cookbooks”),

customer categories (“experts”), and information

derived from other users. Your spending power and

residential address can be funneled in to refine these

snapshots of yourself, which also capture the things

you interact with. The result is an establishment of

characterizations.

5www.element14.com/community

https://www.element14.com/community/welcome?CMP=EBOOK-PRG-AI

GET READY FOR AI: TOOLS TO HELP YOU GET STARTED

A Simple Predicting Machine

Imagine a simple machine that accepts a question,

“thinks,” and yields an answer. An appropriate human

analogy is to receive input through your eyes, use your

brain to analyze that scene, and generate a conclusion

about the objects present in that scene. Here’s a

pictorial representation in diagram to the right.

Computers do not think. A machine accepts some input, does a little calculation, and submits an output.

Imagine a machine which converts kilometers to miles. It is known that the relationship between these two is

linear. It implies that if we double the number of miles, the kilometers distance also gets increased. Such a linear

relationship between kilometers and miles provides a clue about the needed calculation in the form “miles =

kilometers x c,” where c is constant. This constant c, at present, continues to be unknown for the purposes of

this example.

To work out this missing constant c, you can pluck a

random value, such as c = 0.5, and see the result.

Here miles = kilometers x c, where kilometers is 100

and c is 0.5.

The result is 50 miles. We know c = 0.5 is incorrect, as the correct answer is 62.137. The difference between

right and wrong is 12.137. This is the error, the difference between actual and our calculated answer.

Thus, error = truth - calculated

= 62.137 - 50

= 12.137

CHAPTER 2 What You Need to Know to Get Started

This chapter discusses what a neural network is and

how it trains a machine.

The History and Birth of the Neural Network

AI became a formal field of study during the 1950s.

Initial successes included computers proving

theorems and playing simple games. Many believed

that machines having human-level intelligence would

be invented within a decade. This, sadly, did not

materialize. A new method was then adopted: copy the

biological brain to create an artificial one.

Neural networks subsequently emerged from intelligent

biological computing and made inroads in the artificial

intelligence discipline. Google’s Deepmind, with neural

networks in its foundation, is an excellent example.

It defeated a human world master at Go, a complex

recreational game. Neural networks are employed

inside everyday technology, decoding handwritten

postcodes on handwritten letters and automatically

recognizing car number plates.

6 www.element14.com/community

https://www.element14.com/community/welcome?CMP=EBOOK-PRG-AI

GET READY FOR AI: TOOLS TO HELP YOU GET STARTED

Now, if we try again with c=0.6, the error is a much reduced 2.137. Moving to 0.7 will show the error to be

-7.863. The minus sign states that we have overshot. Values between 0.6 and 0.7 must be checked. This clearly

illustrates the impossibility of solving a problem in a single step.

Classifying

Classifying is the same as predicting.

The plot 1 graph shows the measured dimensions of garden bugs.

Two groups include thin and long caterpillars and wide and short ladybirds.

Remember the predictor which attempted to calculate the correct

number of miles if provided kilometers? That predictor was armed with

an adjustable linear function in its heart. It is worth noting that linear

functions provide straight lines when you plot output against an input. This

adjustable parameter c altered the straight line slope.

The splitting line in plot 2 and plot 3 cannot be a good classifier, as one is

on the caterpillar, and the other is under the ladybird. Plot 4 displays the

good classifier separating the two. It can be utilized to identify the new

bug, as displayed in plot 5.

Neurons

Neurons–in all their forms—transmit electrical signals along their length, from dendrites along the axons to

terminals. These signals are transmitted between neurons. This is how a human body senses light, touch

pressure, sound, and so on. Specialized sensory neurons transmit signals along the nervous system to the brain,

which itself is mostly neurons.

A neuron works by taking an electric input and popping out an electrical signal. This looks identical to the older

classifying or predicting machines, which accepted an input, executed some processes, and gave an output.

Observations imply that neurons suppress input until it has grown so big that it activates an output. This can be

thought of as a threshold that must be touched before the production of any output.

7www.element14.com/community

https://www.element14.com/community/welcome?CMP=EBOOK-PRG-AI

GET READY FOR AI: TOOLS TO HELP YOU GET STARTED

The diagram to the left features a good example of an

undemanding step function.

It is observed that output is zero for low input values. The

output spikes when threshold input is touched. An artificial

neuron behaving identically would replicate a biological neuron.

Scientists use the phrase “neurons firing” when the input

reaches the threshold.

The smooth S-shaped sigmoid function will be used for making

our neural network. Artificial intelligence researchers use similar

functions. The sigmoid is a simple and common function, and is

termed a logistic function.

The following diagram shows this idea of merging inputs and subsequent application of this threshold to the

amalgamated sum:

If the merged signal is insufficiently large, then the sigmoid threshold function causes output signal suppression.

A large sum x causes the sigmoid to fire that neuron. It is to be noted that even if one of several inputs is large

and the balance small, it is enough to fire the neuron.

Dendrites collate the electrical signals and combine to make a powerful electrical signal. If this signal is

sufficiently strong to sweep the threshold, dendrites fire a signal through the axon to the terminals to flow on to

the succeeding neuron’s dendrites.

Replicating these natural phenomena in an artificial model requires neurons in layers, with each neuron

interconnected to all others in the subsequent and preceding layer. The following diagram explains this idea:

You can see three layers, each with three nodes or artificial neurons. Each node is connected to all other nodes

in the preceding and succeeding layers.

8 www.element14.com/community

https://www.element14.com/community/welcome?CMP=EBOOK-PRG-AI

GET READY FOR AI: TOOLS TO HELP YOU GET STARTED

It is logical to adjust the robustness of the connections joining the nodes. The summation of the inputs can be

adjusted inside the node, or the sigmoid threshold function shape is altered. The latter, however, is complicated

compared to simply changing the strength of the node links.

The figure above shows a weight related to each connection. A high weight will result in boosting the signal,

while a low weight will quiet it.

Following a Signal Through a Neural Network

The following illustration explains a smaller, two layer neural network, with each layer having two neurons:

Neural Network Signal Flow

Let’s assume the two inputs are 1.0 and 0.5. These inputs are entered into this smaller neural network.

A few random weights are assumed:

n w 1,1 = 0.9

n w 1,2 = 0.2

n w 2,1 = 0.3

n w 2,2 = 0.8

9www.element14.com/community

https://www.element14.com/community/welcome?CMP=EBOOK-PRG-AI

GET READY FOR AI: TOOLS TO HELP YOU GET STARTED

It is now prudent to calculate the output of both inputs. The output x is given as

X = (output from first node * link weight) + (output from second node* link weight)

X1= (1.0 * 0.9) + (0.5 * 0.3)=1.05

X2=(1.0 * 0.2) + (0.5 * 0.8)=0.6

Applying the sigmoid function we get

Y(X1)=1/(1+0.34993)=1/(1.34993)=0.7408

Y(X2)= 1/(1 + 0.5488) = 1/(1.5488) = 0.6457

These simple calculations will be too complicated for a network comprised of 5 layers and 100 nodes in every

layer. Matrices can solve this puzzle. The above calculation can be written in matrix form as:

Learning Weights from More Than One Node

A simple linear classifier can be refined by adjusting the node’s linear function. The error (the difference between

the answer generated by the node and what we know the answer should be) guides that refinement. This is not

difficult, as the relationship between error and required slope adjustment can be easily calculated.

The problem of updating link weights comes to the fore

when several nodes contribute to the output and also its

error. One idea is to cut this error equally amongst all the

contributing nodes.

Another approach is to chop the error unequally. More

error is given to those contributing connections that have

additional link weights. The reason? Their error contribution

is more significant. The diagram to the left demonstrates

this idea.

Here two nodes contribute a signal to output node with link weights 3.0 and 1.0. A proportionate splitting of the

error to these weights reveals ¾ of output error to be used for more significant weight update, and ¼ of error for

the residual smaller weight.

This idea can be extended to other nodes. If 100 nodes are linked to an output node, the error is split across 100

connections to the output node in proportion to each link’s contribution to that error, as indicated by link weight

size.

Weights are thus used in two ways. The weights at first communicate signals from input to output layers within

10 www.element14.com/community

https://www.element14.com/community/welcome?CMP=EBOOK-PRG-AI

GET READY FOR AI: TOOLS TO HELP YOU GET STARTED

a neural network. The weights are then used to reverse transmit the error from the output into the network. This

method is termed backpropagation.

Neural Network with Python

We can write our neural network with Python and incrementally build up a Python program.

The Skeleton Code

We must sketch out how a neural network class should appear. There must be a minimum of three functions:

n Initialization to set number of input, hidden, and output nodes

n Train refine weights after a training set example is given for learning purposes

n Generate an answer from output nodes after input is given in a query

The shape of the code would be like:

neural network class definition

class neuralNetwork :

initialize the neural network

def _init__() :

pass

train the neural network

def train() :

pass

query the neural network

def query() :

pass

Initializing the Network

The number of input, hidden, and output layer nodes must be set to define the neural network’s shape and size.

These are not permanent, and can be set when parameters can be used to create a new neural network object.

This procedure retains the option to create new different-sized neural networks easily.

The developed neural network code must accept a maximum number of useful open options, and simultaneously

keep assumptions to a bare minimum. If this is done, the code can be effortlessly used for multiple needs. The

class, which can create a small neural network, can also create a huge one by merely passing the necessary size

as parameters. The learning rate—another useful parameter—is set during the creation of a brand new neural

network.

Weights are the Heart of the Network

The next step constitutes the creation of the nodes and links network. Link weights are a vital component of this

network, and are used to calculate the specific signal being fed forward, the error as it is propagated backward,

and also the link weights themselves, which are refined to enhance the network.

11www.element14.com/community

https://www.element14.com/community/welcome?CMP=EBOOK-PRG-AI

GET READY FOR AI: TOOLS TO HELP YOU GET STARTED

Since weights can be concisely conveyed as a matrix, it is possible to create:

n A matrix for weights for links between input and hidden layers, W input_hidden, of size(hidden_nodes by

input_nodes).

n A second matrix for links between hidden and output layers, W hidden_output, of size (output_nodes by

hidden_nodes).

n The older convention is to investigate why the first matrix is of size (hidden_nodes by

input_nodes) and the other way around (input_nodes by hidden_node).

The link weights’ initial values must be small. The NumPy function produces an array of values selected

randomly between 0 and 1, where size is (rows by columns).

Querying the Network

The query () function draws input to a neural network and returns the network’s output. To do this, the input

signals must pass from the nodes’ input layer via the hidden layer and exit from the final output layer. It is to be

noted that link weights are used to moderate signals as they are fed into any output or hidden node. The sigmoid

activation function is used to output the signal arising from those nodes.

A vast population of nodes implies the painful task of writing Python code for each node, conducting weight

moderation, summing the signals, and applying an activation function. More nodes mean more code. There is,

however, no need, as all these instructions can be written in a concise and straightforward matrix form.

The following content expands on how the matrix of weights for that link between the simple Python piece

combines all inputs with the right link weights to generate the combined moderated signals matrix into each

hidden layer node. Rewriting is unnecessary if we select a different number of nodes for hidden or input layers to

use the next time. The sigmoid squashing function is added to each of these emerging signals:

O hidden = sigmoid(X hidden) to get the signals from the hidden node.

The sigmoid function is defined in the Python library. The scipy Python library contains a special function set,

and the sigmoid function is termed expit().

Since we want to tweak or make a radical change to the activation function, it is imperative to define it once

inside the neural network object during its first initialization. We can subsequently refer to it multiple times, as

in the query () function. This arrangement implies a single definition change, and it is unnecessary to locate and

then edit the code anywhere where an activation function is used.

The activation function in use within the neural network’s initialization section is defined by:

activation function is the sigmoid function

self.activation_function = lambda x: scipy.special.expit(x)

Training the Network

The training task needs more involvement and has two parts:

The first part involves finding the output for any given training example; the second involves taking the calculated

12 www.element14.com/community

https://www.element14.com/community/welcome?CMP=EBOOK-PRG-AI

GET READY FOR AI: TOOLS TO HELP YOU GET STARTED

output, comparing it with the desired output, and using this difference to guide network weights.rk updation.

The weights must be improved during training based on the error between the calculated output and the target

output. This can be done through manageable steps.

The first action is to calculate the error, which is the difference between the wanted target output offered by

the specific training example and the actual calculated output. This is the difference between the matrices

targetsfinal_outputs) done by combining through every element.

The Complete Neural Network Code

neural network class definition

class neuralNetwork :

 # initialise the neural network

 def __init__(self, inputnodes, hiddennodes, outputnodes, learningrate) :

 # set number of nodes in each input, hidden, output layer

 self.inodes = inputnodes

 self.hnodes = hiddennodes

 self.onodes = outputnodes

 # link weight matrices, wih and who

 # weights inside the arrays are w_i_j, where link is from node i to node j in the next layer

 # w11 w21

 # w12 w22 etc

 self.wih = numpy.random.normal(0.0, pow(self.hnodes, 0.5), (self.hnodes, self.inodes))

 self.who = numpy.random.normal(0.0, pow(self.onodes, 0.5), (self.onodes, self.hnodes))

 # learning rate

 self.lr = learningrate

 # activation function is the sigmoid function

 self.activation_function = lambda x: scipy.special.expit(x)

 pass

 # train the neural network

 def train(self, inputs_list, targets_list) :

 # convert inputs list to 2d array

 inputs = numpy.array(inputs_list, ndmin=2).T

 targets = numpy.array(targets_list, ndmin=2).T

 # calculate signals into hidden layer

 hidden_inputs = numpy.dot(self.wih, inputs)

 # calculate the signals emerging from hidden layer

 hidden_outputs = self.activation_function(hidden_inputs)

 # calculate signals into final output layer

13www.element14.com/community

https://www.element14.com/community/welcome?CMP=EBOOK-PRG-AI

GET READY FOR AI: TOOLS TO HELP YOU GET STARTED

 final_inputs = numpy.dot(self.who, hidden_outputs)

 # calculate the signals emerging from final output layer

 final_outputs = self.activation_function(final_inputs)

 # output layer error is the (target-actual)

 output_errors = targets-final_outputs

 # hidden layer error is the output_errors, split by weights, recombined at hidden nodes

 hidden_errors = numpy.dot(self.who.T, output_errors)

 # update the weights for the links between the hidden and output layers

 self.who += self.lr * numpy.dot((output_errors * final_outputs * (1.0 - final_outputs)), numpy.
transpose(hidden_outputs))

 # update the weights for the links between the input and hidden layers

 self.wih += self.lr * numpy.dot((hidden_errors *hidden_outputs * (1.0 - hidden_outputs)), numpy.
transpose(inputs))

 pass

 # query the neural network

 def query(self, inputs_list) :

 # convert inputs list to 2d array

 inputs = numpy.array(inputs_list, ndmin=2).T

 # calculate signals into hidden layer

 hidden_inputs = numpy.dot(self.wih, inputs)

 # calculate the signals emerging from hidden layer

 hidden_outputs = self.activation_function(hidden_inputs)

 # calculate signals into final output layer

 final_inputs = numpy.dot(self.who, hidden_outputs)

 # calculate the signals emerging from final output layer

 final_outputs = self.activation_function(final_inputs)

 return final_outputs

Machine learning (ML) tools can be used to help get your ML project started.

Platform Versus Library

Machine learning tools can be separated into Libraries and Platforms. A platform offers everything to run a

project, whereas a library solely provides discrete capabilities or the parts needed for project completion.

CHAPTER 3 Tools to Help You Get Started

14 www.element14.com/community

https://www.element14.com/community/welcome?CMP=EBOOK-PRG-AI

GET READY FOR AI: TOOLS TO HELP YOU GET STARTED

Examples of ML platforms:

n Amazon Web Services

n Azure machine learning tools

n IBM’s Watson platform

ML Libraries:

The following table shows popular libraries used in ML:

Purpose Library

Scientific Computation Numpy

Tabular Data Pandas

Data Modelling & Preprocessing Scikit Learn

Deep Learning Tensorflow, Pytorch, Caffe

While ML platforms focus primarily on business or end product implementation, the library is recommended for

enthusiasts who want to write code from scratch and hone their subject skills. To start, the user must possess a

working knowledge of Python and ML libraries. The user must have the skill to use these libraries installed within

the system.

Devices for Inferencing

ML libraries can be easily installed on several Single Board Computers (SBCs) like the BeagleBone AI, Avnet

Ultra96-V2 dev board, or the Raspberry Pi. These SBCs are ideal for various inferencing tasks, with the model

being deployed on such devices after creation and training. It is recommended that you should not train any

model on SBCs, since it involves complex matrix computation. There is an additional complication, too: a

powerful GPU is necessary to train a complex model.

The Raspberry Pi has considerable community support, and ML libraries are easily accessed. Google’s

Tensorflow library officially supports the Raspberry Pi.

The article Machine Learning: Using Tensorflow on the Raspberry Pi, gives an example of how to use this ML

library with the Pi. See article here.

The BeagleBone AI comes with a preinstalled Caffe-Jacinto library based on Caffe, which helps to speed up the

task as new code does not need to be written from scratch. The BeagleBone AI also comes with an embedded-

vision-engine (EVE) core, enabling efficient processing of videos and images.

The inferencing task occasionally requires better computation capabilities along with superior graphic

processing. The Avnet Ultra96-V2 board is a good choice, and comes with an Arm processor and an FPGA for

better processing. The board’s neural processing unit (NPU) contributes to efficient neural network computation.

The Brainium SmartEdge Agile device can also be used when you want to deploy an ML model without getting

deep into the weeds. The Branium portal is an ML Platform permitting users to create an ML model without

writing a single slice of code. The result can be directly used on the SmartEdge Agile device.

15www.element14.com/community

https://www.element14.com/community/welcome?CMP=EBOOK-PRG-AI
https://www.element14.com/community/groups/ai-machine-learning/blog/2020/03/25/machine-learning-using-tensor-flow-on-the-raspberry-pi?CMP=EBOOK-PRG-AI
https://www.element14.com/community/community/designcenter/single-board-computers/next-genbeaglebone?CMP=EBOOK-PRG-AI
https://www.element14.com/community/community/designcenter/single-board-computers?CMP=EBOOK-PRG-AI
https://www.element14.com/community/community/raspberry-pi?CMP=COMe14-EBOOK-PRG-AI
https://www.element14.com/community/community/designcenter/zedboardcommunity/ultra96?CMP=COMe14-EBOOK-PRG-AI
https://www.element14.com/community/community/designcenter/zedboardcommunity/ultra96?CMP=COMe14-EBOOK-PRG-AI
https://www.element14.com/community/groups/fpga-group?CMP=EBOOK-PRG-AI
https://www.element14.com/community/groups/ai-machine-learning/blog/2020/03/25/machine-learning-using-tensor-flow-on-the-raspberry-pi?CMP=EBOOK-PRG-AI

GET READY FOR AI: TOOLS TO HELP YOU GET STARTED

BeagleBone® AI

The BeagleBone® AI is a high-end Single Board Computer aimed

at developers interested in implementing machine-learning and

computer vision with simplicity. BeagleBone® AI includes a dual-core

ARM Cortex-A15 running at 1.5 GHz, 16GB on-board eMMC flash, a

SuperSpeed USB Type-C interface, Gigabit Ethernet and dual band

wireless connectivity.

Raspberry Pi 4 Model B

Raspberry Pi 4 Model B offers ground-breaking increases in

processor speed, multimedia performance, memory, and connectivity.

This product’s key features include a high-performance 64-bit quad-

core processor, dual-display support at resolutions up to 4K via a pair

of micro-HDMI ports, hardware video decode at up to 4Kp60, 2GB

of RAM, dual-band 2.4/5.0GHz wireless LAN, Bluetooth 5.0, Gigabit

Ethernet, USB 3.0. Also available in 4GB and 8GB.

SMARTEDGE AGILE

The SMARTEDGE AGILE meta-sensor, together with the Brainium IoT

platfrom, form part of an end to end IoT solution that delivers AI and

Security at the Edge. Brainium accelerates delivery of IoT solutions

with higher performance, security and stability, while significantly

reducing costs.

Ultra96-V2

The Avnet Ultra96-V2 is an Arm-based, Xilinx Zynq UltraScale+ ™

MPSoC development board based on the Linaro 96Boards Consumer

Edition (CE) specifications, providing, developers with a unique and

powerful environment to simplify machine learning. See the

Industrial version.

SmartEdge Industrial IoT Gateway

Avnet’s SmartEdge Industrial IoT Gateway is based on the Raspberry

Pi’s Broadcom BCM2837 SoC, a 64-Bit quad-core ARM processor

and features on-board 8GB eMMC, RS485/RS232, CAN & Modbus

interfaces and a -20°C to 70°C temperature range.

See more available AI products in the Americas, Europe, or Asia-Pacific.

16 www.element14.com/community

https://www.element14.com/community/welcome?CMP=EBOOK-PRG-AI
https://www.element14.com/community/view-product.jspa?fsku=3132825&nsku=10AH2651&COM=EBOOKAI-PRG-AI&CMP=EBOOK-PRG-AI
https://www.element14.com/community/view-product.jspa?fsku=3132825&nsku=10AH2651&COM=EBOOKAI-PRG-AI&CMP=EBOOK-PRG-AI
https://www.element14.com/community/view-product.jspa?fsku=3050481&nsku=99AC7784&COM=EBOOKAI-PRG-AI&CMP=EBOOK-PRG-AI
https://www.element14.com/community/view-product.jspa?fsku=3050481&nsku=99AC7784&COM=EBOOKAI-PRG-AI&CMP=EBOOK-PRG-AI
https://www.element14.com/community/view-product.jspa?fsku=3105658&nsku=02AH6799&COM=EBOOKAI-PRG-AI&CMP=EBOOK-PRG-AI
https://www.element14.com/community/view-product.jspa?fsku=3105658&nsku=02AH6799&COM=EBOOKAI-PRG-AI&CMP=EBOOK-PRG-AI
https://www.element14.com/community/view-product.jspa?fsku=2981063&nsku=84AC0532&COM=EBOOKAI-PRG-AI&CMP=EBOOK-PRG-AI
https://www.element14.com/community/view-product.jspa?fsku=2981063&nsku=84AC0532&COM=EBOOKAI-PRG-AI&CMP=EBOOK-PRG-AI
https://www.element14.com/community/view-product.jspa?fsku=3359878&nsku=52AH8549&COM=EBOOKAI-PRG-AI&CMP=EBOOK-PRG-AI
https://www.element14.com/community/view-product.jspa?fsku=3051886&nsku=02AH3162&COM=EBOOKAI-PRG-AI&CMP=EBOOK-PRG-AI
https://www.element14.com/community/view-product.jspa?fsku=3051886&nsku=02AH3162&COM=EBOOKAI-PRG-AI&CMP=EBOOK-PRG-AI
https://www.element14.com/community/view-product.jspa?fsku=3051887&nsku=02AH3164&COM=EBOOKAI-PRG-AI&CMP=EBOOK-PRG-AI
https://www.element14.com/community/view-product.jspa?fsku=3369503&nsku=64AH2041&COM=EBOOKAI-PRG-AI&CMP=EBOOK-PRG-AI
https://www.newark.com/artificial-intelligence?CMP=EBOOK-PRG-AI&COM=EBOOKAI-PRG-AI
https://uk.farnell.com/artificial-intelligence?CMP=EBOOK-PRG-AI&COM=EBOOKAI-PRG-AI
https://sg.element14.com/artificial-intelligence?CMP=EBOOK-PRG-AI&COM=EBOOKAI-PRG-AI

© 2020 by Newark Corporation, Chicago, IL 60606. All rights reserved. No portion of this publication, whether in whole or in part, can be reproduced without the express written consent of
Newark Corporation. Newark® is a registered trademark of Farnell Corp. All other registered and/or unregistered trademarks displayed in this publication constitute the intellectual property of their
respective holders. WF-2195219

Facebook.com/e14Community
Twitter.com/e14Community

300 S. Riverside Plaza, Suite 2200
Chicago, IL 60606

www.element14.com/community

https://www.element14.com/community/welcome?CMP=EBOOK-PRG-AI
https://www.element14.com/community/welcome?CMP=EBOOK-PRG-AI
https://www.element14.com/community/welcome?CMP=EBOOK-PRG-AI
https://www.element14.com/community/groups/ai-machine-learning?CMP=EBOOK-PRG-AI
https://www.facebook.com/e14community
https://www.facebook.com/e14community
https://www.youtube.com/channel/UCtRv7HPEKt12ejfOIqPo7dA
https://twitter.com/e14community/
https://twitter.com/e14community/
https://www.linkedin.com/company/farnell-global

