


Electromechanics

First we present an overview of electromechanical devices required 
for the implementation of expressive possibilities in automata. We 
also pay attention to the circuitry involved. In a second chapter (to be 
developed even further later) we will delve deeper in the low level 
software/firmware.

1.- Automata where the sound originates from striking

Examples: player pianos (strike and hold), percussion robots (strike 
and bounce back).

Technical solution: precise control of the striking force by modulation 
of the width of the excitation pulse. 

Electromechanical parts: moving anchor solenoids, tubular solenoids, 
rotary solenoids.

Different types of solenoid can be used depending on the 
requirements: tubular solenoids (push type and pull types do exist) 
being our favorites in all cases where the force has to be exerted in a 
vertical plane.

  The picture on the 
left shows a large Black Knight tubular push type solenoid, used for 
the concussion of a couple of heavy 'bass' castanets as used in our 
<Simba> robot. In the picture on the right we see a Black Knight 
tubular pull solenoid used for lifting the pallets in an automated bass 
accordion. For piano Vorsetzers, push types become the obvious 
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choice. In the 
picture we see Lucas Ledex tubular solenoids with rubber pushers we 
designed ourselves. If the striking force is in a horizontal plane, it is 
generally better to use rotating anchor solenoids as used in organ 
building. The reason is that tubular solenoids operating on a horizontal 
plane suffer considerably from friction and need springs to return 
them to the original position after striking. Gravity cannot be used to 
advantage in this case. Despite this we have applied them in our 
<Tubo> robot, as there was no alternative solution. 

The picture shows a 10 Newton double coil 
register magnet as produced by August Laukhuff. This type is 
extremely quiet in operation but not very fast. Brand names for the 
tubular solenoid types useful in musical robots are Lucas Ledex - now 
Saaia Burgess -, Kuhnke, Tremba, and Black Knight. For rotating 
anchor types, August Laukhuff used to be a good source, but they 
went of of busines in 2021. Heuss may be or become an alternative 
source nowadays. Below are some more applications of different types 
of rotating anchor solenoids used in automated percussion 
instruments:
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If pulse-only operation is required - as in automated struck percussion, 
drums, bells etc. - the drive circuit becomes extremely simple: 

For ease of interfacing to standard TTL logic levels, we invariably 
prefer to use logic level mosfets that turn fully on at 5V such as the 
IRL640. The pulses whose durations determine the striking force 
generally come from an output of a small microcontroller, although 
programmable 16-bit hardware timers (such as Intel 8254) can be used 
as well. These hardware timers have the advantage that it becomes 
easy to implement timing resolutions in the order of 0.1 microseconds, 
using a 10 MHz crystal. With microcontrollers such as the popular 
Microchip 18F PIC series, we cannot achieve a resolution of much 
better than approx. 5 microseconds. The resolution depends on how 



many timed pulses you want to get from a single controller. For a 16-
output design, the resolution will tend to be rather in the order of 27 
microseconds.

The circuit above is about the easiest one could imagine to implement 
note-on with velocity, including a hold as required for instruments 
such as pianos and touch-sensitive organs. The circuit uses a single 
positive supply voltage. The disadvantage is that a lot of power 
resistors - one for each note - are required, leading to larger current 
consumption than strictly needed. From an engineer's point of view it 
might appear silly to use such a circuit, as you might think it were 
easy enough to control the power mosfet with PWM. The trouble with 
PWM however is that it causes audible artifacts from the solenoids. If 
you try to overcome these by setting the fundamental frequency way 
above audio, however, you will run in trouble with the dissipation and 
electromagnetic radiation (EMC).

Example projects: 

• Player piano 
• Troms 
• Tubi 
• Vibi 
• Simba 
• Xy 
• Rotomoton 
• Toypi 

The same technology can be applied to the damping of the sound in 
some instruments, such as the vibraphone. The circuitry for a variable 
pulse combined with a constant hold voltage is shown below in a 
circuit as we used it in our <Harma> robot. This circuit is a further 
development of a similar circuit using darlington transistors as 
designed by my colleague Trimpin for his player piano, build to make 
performances of Conlon Nancarrow's piano rolls from midi-files 
possible.

file:///C:/LogosWebsite/instrum_gwr/harma.html
file:///C:/LogosWebsite/instrum_gwr/toypi.html
file:///C:/LogosWebsite/instrum_gwr/rotomoton.html
file:///C:/LogosWebsite/instrum_gwr/xy.html
file:///C:/LogosWebsite/instrum_gwr/simba.html
file:///C:/LogosWebsite/instrum_gwr/vibi.html
file:///C:/LogosWebsite/instrum_gwr/tubi.html
file:///C:/LogosWebsite/instrum_gwr/troms.html
file:///C:/LogosWebsite/instrum_gwr/playerpiano.html


The circuit can also be created with a small p-channel FET instead of 
the PNP transistor. The diagram below shows the circuit as we applied 
it in <Qt> but also - with different power supply voltages and 
solenoids - in the latest models of our player piano.



By applying PWM (preferably using the lowest possible frequencies 
for reasons mentioned above) to the hold input, aftertouch can be 
implemented as well. The effectiveness of such an approach is highly 
dependent on the mechanical design of the solenoids or valves. 
Conical valves are the optimum choice if aftertouch is to be 
implemented. In the <Bomi> robot this was applied. 

The positive hold voltage should never be taken larger as the 
maximum allowable 100% duty cycle voltage for the given coil. 
Lower voltages will lead to reduced holding force. For player-pianos, 
this voltage should be choosen such that the force is just enough to 
hold the key down. The negative pulse voltage should be 4 to 10 times 
the nominal voltage for the coil. Do not go beyond the maximum rated 
voltage however, because the insulation of the winding may not 
survive it. Practical pulse durations vary between fractions of a 
millisecond to ca. 50 ms. The higher the voltage, the shorter the pulses 
can be, and the faster the maximum possible repeat frequency. 
Magnetization time, frictional losses and hysteresis are limiting 
factors. If negative voltages larger than -24 V are used, the gate of the 
negative pulse MOSFET has to be protected with a zener diode. 
IRF540-type MOSFET's or even IGBT's will be a better component 
choice than IRL640 in such cases.
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An alternative circuit makes use of a fast optocoupler (6N137) to 
drive the negative voltage mosfet:

A note on springs:

If push-type tubular solenoids are used to exert a vertical force 
downwards, as in the case of the piano-vorsetzer, it is generally 



necessary to fit a helical spring inside the shaft of the solenoid. 
Although on pianos, the return force of the key generally tends to be 
large enough to bring the solenoid anchors back, this is a bad practice 
as it slows down the reaction speed obtainable from the robot. 
Moreover, the possibilities for nuance will be greatly reduced. The 
springs should be calculated and fabricated to have just enough force 
to lift the anchors up at rest. Their length should correspond to the 
required traject of movement. It should also be noted that these 
springs need replacement after about 3 or 4 years of daily operation, 
since they lose force due to material fatigue.

Anchor shapes for tubular solenoids

The drawing below shows the three basic types of shapes for the 
moving anchors inside tubular solenoids. Both the push and the pull 
version (if different) are shown.

 
The first type - the most common in the industry - develops the largest 
holding force, since the anchor is in flat contact with the end pole of 
the electromagnet wound on the armature (drawn in red). The big 
disadvantage is that this type of anchor causes a very high noise level 
at the moment the anchor hits the pole. This applies even more to the 
pull type of the same shape. The noise can be substantially damped 
with a felt washer but obviously this leads to a reduction of the 
holding end force. The second type shows a tapered end. This type has 
a much more gradual force against applied voltage characteristic. 
Therefore we have found that this type is the optimum choice for 
musical robots in many cases. The noise is damped here as soon as we 
insert a spring over the tapered end inside the coil former. The 
smoothest operation, but also the lowest holding force, is obtained 
with the third type, where the anchor can move freely through the coil. 
In this case there is no real holding force and the anchor behaves 
somewhat like a spring on varying loads. This type can be used both 
for pushing and pulling. The disadvantage is, besides low efficiency, 
that fitting return springs as well as end stops is mechanically rather 
difficult.

A note on human fingers...

When human fingers activate keys, for example on pianos and organs, 
there is never a problem with noises at key release. Potential noises 
are damped by the design of the mechanics of the instrument. 



However, with instruments such as the accordion, replacing human 
fingers with solenoids does cause noise problems. In these 
instruments, when played by human fingers, the keys are released with 
a damping caused by the stiffness and mass of the human fingers. 
When we replace these fingers with (tubular) solenoids, the speed 
with which the keys are released becomes much higher, resulting in 
lots of noise caused by the sudden (spring-loaded) closing of the 
valves. This problem particularly plagued the design of our automated 
accordion <Ake>. It is also relevant for the valve action of valve-
operated brass instruments. We propose three different approaches to 
solving this problem: the first one involves applying PWM on note-off 
commands such that the solenoids lose magnetization only slowly. 
However the load on the firmware, particularly for highly polyphonic 
instruments, quickly becomes prohibitive. Furthermore the remarks 
with regard to PWM mentioned before do apply here as well. A 
second, alternative solution makes use of analogue circuitry in 

hardware:  Here we 
place a large capacitor in parallel over the solenoid. The capacitor is 
charged on turn-on by the mosfet via Rr. This resistor should be sized 
at about 5 times the value of the DC resistance of the solenoid used. 
When the mosfet is turned off, the capacitor discharges via the series 
diode into the solenoid. The RC time corresponds to the product of the 
solenoid's DC resistance and the value of Cr. Practical values for Cr 
are in the range of 1mF to 10mF. Since capacitors with these values 
invariably have to be electrolytes, they tend to be rather large. The RC 
time should be below the inverse of the maximum repetition rate for 
notes (in Hz), one wants to achieve on the instrument. A third 
solution, also involving analogue hardware, operates similarly but this 
time on the gate of the mosfet. Although the circuit is very simple and 
does not make use of large electrolytic capacitors, it suffers from the 
large spread in the analog gate drive characteristics of the power 
mosfets we prefer to use. The circuit also affects turn-on time. But the 
main problem here, using the mosfets as slow switching devices, is 
that it will increase their dissipation quite a bit. Thus the space (and 
expense...) you gain by avoiding the large capacitors in the second 
solution is lost in the space (and cost) needed for the increased cooling 
requirements on the power mosfets. All of the proposed methods have 
been but into practice by us. Our favorite for a long time was the 
second one, despite the large space penalty involved. For the <Pianet> 
robot, we experimented with the soft-release via the gate circuit 
method: 



One has to experiment a bit with the C and R values here as they 
depend quite a bit on the characteristics of the MOSFET used. Also, it 
is important to use a low drop diode here: a Schottky type, or even a 
germanium diode. If 3V3 processors are used, this will be mandatory 
as the choice in power MOSFET's turning fully on with less the 3 V, 
is pretty limited.

However, the problem for all solutions presented here is that they 
invariably introduce a limitation on note repetition speed. Any 
solution we can think of for this problem requires looking ahead in 
software: if we know what the next note will be, we can adapt the 
release time accordingly. Obviously, this is not possible for a robot 
that is supposed to operate in real time and without any latency.

A note on the law of the hammer

Instruments whose sound is produced by striking an object with a 
beater follow the same physical laws that govern those of the hammer. 
The energy of the collision equals the mass of the hammer multiplied 
by the square of the speed at the moment of the collision divided by 
two: 



Therefore it seems more profitable to increase and control the speed of 
the hammer rather than its mass. Increasing the speed was 
traditionally (in pneumatically driven automata) done mostly by using 
a longer handle on the hammer. This approach, however, is severely 
detrimental to repetition speed, since the movement trajectory 
becomes much longer as well. With solenoid-driven beaters, the mass 
of the anchor has to be taken into account when it is rigidly coupled to 
the beater. Magnetization time limits will put limits on the maximum 
obtainable speed. The smaller the mass of the anchor, the faster the 
speed can be, but of course the impact will also be lower. As a general 
rule, one should take the mass of the hammer to be somewhere 
between one tenth and one twentieth of the mass of the object to be 
struck. From there one can start calculation of the required trajectory 
of movement in order to get the desired maximum amplitude. This 
will lead to quite good specifying possibilities for the solenoids to be 
used. Experimentation will be mandatory in almost all cases. It might 
be good to review the elementary mechanics describing collision in 
general:

Note that for an object at standstill, the second term on the left will 
always be zero. The value of v4 will be proportional to the amplitude 
obtained. It depends on the elasticity of both beater and object.

Applying textbook physics formulae it is fairly easy to properly rate 
and design solenoid-driven hammers. If we take s as the trajectory of 
the hammer (we assume the beater is rigidly connected to the anchor 
of the solenoid such that we can consider the moving assembly to 
have total mass m), then, given the response time of the solenoid (this 
data can be read from the datasheets provided by the supplier for a 
wide variety of operating conditions), we can calculate the force 
involved using Newton's second law:

 



A note on clamping diodes:

Inductors switched by semiconductors (MOSFETS, IGBT's, 
transistors...) almost invariably are used with a diode across them to 
dampen the inductive reaction of the coil at turn off. This practice is 
dictated by the need to protect the switching semiconductor against 
voltage surges. Without protection diode the voltage peak can reach 
values over ten times the nominal voltage applied over the circuit. The 
problem one can encounter with this diode, is that it extends the 
duration of the magnetisation in the coil. To speed-up the solenoid 
movement, one could use a power zenerdiode instead of a normal 
silicon diode, rated for somewhat below the maximum allowable 
voltage over the semiconductor. However such diodes tend to be 
rather expensive. If bidirectional solenoids are used, a quite clever 
trick can be applied to speed-up the action and at the same time 

implement an electric return spring: In this 
circuit, the inductive reaction is used to activate the second half of the 
winding as soon as the diode starts to conduct.

2.- Automata where the sound originates from a wind flow

examples: pipe organs, accordions, reed organs, wind instruments 
(flutes, brass and reed-woodwind)

2.1: - Global wind pressure control: 

This can be easily achieved through frequency control of the 
compressor motor. The speed of the possible modulations is limited 
by the large inertia of the motor and compressor blade combination. 
The modulation affects the entire instrument. The motors should be 3-
phase AC induction motor types. Collector motors (universal AC/DC 
motors) cannot be used for they are too noisy in operation. We once 
used one in our <Melauton> robot and could not avoid the 'vacuum-
cleaner' effect...

Example projects:

• Krum 
• Vox Humanola 
• Piperola 
• Bourdonola 
• Harma 
• So 
• Autosax (versions 2 and 3) 
• Bono (versions 1 and 2) 
• HarmO 
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• Bomi 
• Pos 

The easiest practical solution invariably involves the use of a 
programmable industrial motor controller module as made by Siemens 
(Sinamics series), Lust Gmbh, Control Techniques, Hitachi.... These 
controllers all feature a 0-10V dc control input for speed control of the 
3-phase AC motor. Details on programming these controllers can be 
found in the relevant sections of the projects under the hyperlinks 
provided above. We found - with hindsight - that it was not worth the 
trouble of designing these things ourselves, since the cost turned out to 
be higher than the readily available solution. 

The steering DC voltage is most easily derived nowadays from a 
PWM output on a small microcontroller. The PWM is simply filtered 
with an RC combination and rescaled to the required 0-10V range. 
Often this rescaling step can even be left out, since most 
motorcontrollers can be programmed for the optimum range. 
Obviously a DAC convertor can be used as well, but generally 
speaking it is overkill in most cases, since the speed of change is very 
low and it costs us a minimum of about 8 I/O pins on the 
microprocessor. For faster braking, it is advisable to program the 
motor controller to use DC injection in the windings. Braking resistors 
may be used as well.

Note that wide control of operating pressure on reed pipe based 
instruments can be very problematic, since reed pipes do not maintain 
their tuning very well when exposed to varying pressure. This 
problem is non-existant with flue pipes. These pipes also only 
maintain pitch over a small range of pressure variation, but at least 
they always return to the original pitch as the wind pressure returns to 
the nominal tuning value.

A special consideration should be given to the implementation of wind 
pressure and flow control in reed organ type instruments such as reed 
organs, accordion, concertinas, melodicas and such more. In these 
instruments pitch is largely unaffected by windpressure and 
windpressure mainly determines the sound volume. Other than in pipe 
organs, here it is not a good idea to regulate wind pressure to any 
constant value. Instead, motor speed -and thus airflow- ought to be a 
function of the notes playing and the registers effectively drawn. Keep 
in mind that a low 29 (the lowest key on an average reed organ) draws 
up to 64 times more air than a high 101 (the highest note on larger 
reed organs). A simple lookup algorithm should be build into the 
firmware of the motor controller: 

For i = 29 To 101 
Note_Air[i -29] = ((101 - i) / divider) + 1 
Next i

The lookup thus produced (we used a divider value of 16) should be 
multiplied with a factor according to the register(s) drawn. For an 4' 
register x2, for 8' x4, for 16' x 8. The value thus obtained should be 
added to the value of the user requested volume setting. A worked out 
and tested firmware for such an implementation can be found in the 
website pages documenting our <HarmO> robot. Obviously the motor 
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controller used has to be programmed for maximum possible reaction 
speed. If such 'intelligent' motor control is not implemented, the 
instrument will be very noisy and often leaky. 

Although, as said, the used of standard motor controllers is most often 
the cheapest and easiest sollution, there are cases were the design of a 
suitable motorcontroller becomes mandatory. The storm wind module 
in our <Thunderwood> robot is operated by a blower with a 3-phase 
400 Hz / 208 V drawing 0.14A current. Standard controllers are not 
suitable in this case, so we designed a motor controller using a 
Microchip 24EP128MC202 microprocessor. The circuit we developed 
is: 

 
The firmware implements braking by reversing the direction of 
rotation. The base frequency of the PWM is 117 kHz and used to 
generate variable amplitude sinewaves shifted in phase angles of 120 
degrees. The motor frequency can be controlled between 40Hz and 
400Hz and motor voltage is proportional to motor speed, thus 
protecting the motor against overheating. The firmware is available as 
well.
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For our automated siren in <Balsi. we used a very similar approach, 
but here we implemented a full PID algorithm in the firmware, as 
precise speed control was mandatory in order the generate precise 
pitches. The motor control firmware builds on a pretty straightforward 
PID regulating loop. Here is the algorithm, coded in Power Basic:

FUNCTION PID (BYVAL sollvalue AS SINGLE, BYVAL seinvalue 
AS SINGLE, BYVAL OPT kp AS SINGLE, BYVAL OPT ki AS 
SINGLE, BYVAL OPT kd AS SINGLE) EXPORT AS SINGLE 

' The machine constants have to be passed on the first call 
only. Seinvalue is the measured reality value, generaly 
derived from a sample. Sollvalue is the goal we want to 
achieve. The function returns the correction factor for 
regulation and should be used in a regulation loop. 

STATIC propconstant, integrationconstant, 
differenciationconstant AS SINGLE 

STATIC oldfout, iterm AS SINGLE 

LOCAL fout, pterm, dterm AS SINGLE

IF kp THEN propconstant = kp

IF ki THEN

IF ki <> integrationconstant THEN RESET 
iterm ' reset! integrationconstant = ki 

END IF

IF kd THEN

IF kd <> differenciationconstant THEN 
RESET oldfout ' reset differenciationconstant 
= kd 

END

IF fout = sollvalue - seinvalue ' calculate the error pterm = 
propconstant * fout. Proportionality term iterm = iterm + 
(integrationconstant * fout). Integration term dterm = 
differenciationconstant * (fout - oldfout)

oldfout = fout

FUNCTION = pterm + iterm + dterm ' return value for the 
PID correction signal 

END FUNCTION 

Here is the circuit wherein this was implemented: 



2.2:- Using fans

Regular fans as used for cooling in all sorts of electronic devices make 
perfect wind sources for sounding cavity resonators. Such resonators 
work best on low pressure turbulent suction wind. Here we are talking 
only about DC operated fans using BLDC motors, generally operating 
on voltages such as 5V, 12V or 24V. Some types have a separate wire 
connected to a sensor and allowing you to read the speed of rotation.

Example project:

• Whisper 

Controlling the speed of rotation of fans is less straightforward than 
one would think. The reason being that the motors driving the blades 
of fans are BLDC motors. They contain quite some complicated 
circuitry to commute the different windings on the anchor. If you try 
to control such fans with a PWM voltage, you will get very unreliable 
results and eventually you will also ruin the fan. It is mandatory the 
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steer these motor-assemblies with pure DC. This calls for a reliable 
PWM to DC convertor. 

Here are two tested and usefull solutions: 

The first circuit has the advantage that the motor can be fully floating 
with respect to ground. However, finding suitable transformers is 
often a practical problem. The second circuit is simple, but you have 
to make sure the inductor can handle the required current. The 
capacitor must be a low ESR type. 
Some -generally somewhat more expensive- models are available that 
can be controlled with PWM signals directly. Sanyo has quite some 
types in their catalogue. Here is a circuit drawing for a second 
<Whisper> design using fans with PWM control inputs: 



In this application we did not use the sensor signal wire, drawn in blue 
in the above schematic, but it's easy and straightforward to implement 
if needed. Note that in this design we used 12V linear voltage 
regulators as high-side switches. These are 4-lead devices with an 
enable input. The datasheet gives no details as to the allowable 
switching speed on this input; not a problem in this application but be 
warned if ever you try to use these components in fast switching 
applications...

2.3:- Wind flow control: through valves. 

These can be operated pretty fast, driven by either stepping motors or 
servos. Valves can be used to implement a tremulant in some cases.

Example projects:

• Ake 
• Krum 
• Qt 
• HarmO 
• Bomi 

In the accordion robot <Ake> we constructed a large 4-way valve 
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capable of smooth switching between suction and pressure wind with 
all gradations in between. Our first idea to operate this valve with a bi-
directional solenoid didn't work very well. The later use of a stepping 
motor in combination with a Melexis position sensor works nicely. In 
<Qt> we used a similar design for the wind flow control.

Note that commercially available solenoid valves can almost never be 
used in this area of applications. They are not available with large 
enough orifices, they can generally only operate at pretty high 
pressures (1 - 20 Bar) and last but not least, they make a lot of noise.

The stepping motors are inherently a bit noisy. If this is to be avoided, 
a very good solution is to use soft shift solenoids as produced by 
Lucas Ledex. They provide very smooth operation and work very well 
for flow regulation and tremulants in organs. However, their force is 
limited. The application of such a device in combination with a 
conical valve (see further) under PWM control in our <Bomi> robot 
proved to be a great success. 

The bellows can be operated either with a motor and a crank, or with a 
motor coupled to a trapezoidal threaded rod, or else through a (very 
expensive) linear motor. Good and responsive control is possible. 

Example projects:

• Bako 
• Piperola 
• Vox Humanola 

If a trapezoidal threaded rod is used, it is best to drive it with a 
brushed DC motor and an appropriate controller. The starting torque 
should be very high to overcome initial friction. Sensors are required 
to limit the trajectory of the bellows. For precise control of the wind 
pressure, the low pressure sensors offered by Freescale may form the 
basis of a good PID-controlled loop. (Cf. Bako).

2.4.: Individual control of notes: 

Here the use of conical valves operated under PWM becomes 
mandatory. The picture shows the mechanism. The cone is covered 
with fine leather or a synthetic material such as polypel.

 Conical valves can also be 
operated with tubular solenoids. As an alternative, moving coil valves, 
which can be made from re-engineered loudspeakers, can be used as 
well. In the latter case they can be driven with bipolar analogue DC 

file:///C:/LogosWebsite/instrum_gwr/voxhumanola.html
file:///C:/LogosWebsite/instrum_gwr/piperola.html
file:///C:/LogosWebsite/instrum_gwr/bako.html


current (double H-bridge). This technology not only allows control of 
the individual note attack, but also note aftertouch. Furthermore, it is 
possible to operate each note with an individual pump, driven by a 

solenoid, as we did in <Puff>.  The picture 
shows the mechanism involved: underneath is a tubular solenoid 
(Lucas Ledex type) pushing the anchor on the carbon-compound 
plunger inside the glass cylinder (Airpot). In this case we used a 
single-pulse driving circuit as described before for use in percussion 
instruments. However, if you go that far, it becomes difficult to obtain 
sustained notes unless at least two pumps are used for each note. With 
a single coil/pump combination you can get at the most a steady 
flatterzunge (flutter-tonguing).

If the requirements as to the control range of attack and/or aftertouch 
are not too critical, flat solenoid-driven pallets can be used. 

 

 The types shown on the pictures are 
made by August Laukhuff: the left one has a 35 mm pallet, the right 
one 40 mm. These types can easily be converted to operate conical 
valves by exchanging the flat pallets with conical ones, as shown in 
the first picture under this heading. For good velocity control, the 
original springs must be replaced with a stronger type. Details can be 
found in our pages on the development of our 6-octave quartertone 
organ <Qt>.
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2.3:- Wind modulation and control through bellows. 

The laws governing airflow control through round flat valves are: 

The fundamental problem with gradual control of valves with 
solenoids is that the trajectory for the opening versus applied voltage 
is normally very steep, and furthermore the working trajectory is 
different for opening and closing. The graphs below give typical 
curves:



 
The last curve depicted represents the best possible compromise, 
obtained by using conical valves in combination with a much-
increased spring force. 

Examples of projects:

• Qt (flat valves with individual note aftertouch) 
• Puff (individual solenoid-driven pumps for each note) 
• Thunderwood (bird mechanism) 
• Bomi (conical valves with individual note aftertouch) 

In some of our early automata (<Piperola> and <Vox Humanola>) we 
used direct-acting solenoid valves to steer the windflow to the pipes. 
Such valves cannot be used off the shelf unless you are prepared to 
live with the loud clicking noises these valves produce at switching. 
To overcome this, we shortened the ferromagnetic anchors inside 
these valves by some 3 to 5 mm on the lathe, replaced the back end 
with a circular piece of felt, and reduced the force of the return 
springs. Although it is possible to use these valves for velocity control 
of the note attacks by steering them with PWM or variable DC, the 
results are quite disappointing because the valve response is quite 
unpredictable. Ultimately, the valves work nicely as switches, but 
when you make the final bill, it comes out to be about twice as 

file:///C:/LogosWebsite/instrum_gwr/voxhumanola.html
file:///C:/LogosWebsite/instrum_gwr/piperola.html
file:///C:/LogosWebsite/instrum_gwr/Bomi.html
file:///C:/LogosWebsite/instrum_gwr/thunderwood.html
file:///C:/LogosWebsite/instrum_gwr/puff.html
file:///C:/LogosWebsite/instrum_gwr/qt.html


expensive as using regular valves as described before. The only areas 
of musical automata where these solenoid valves become the device of 
choice are automated, tuned, membrane-driven car horns or ship horns 
driven by compressed air (1 to 6 Bar pressure). <Toetkuip> and 
<Klankboot> are two open-air projects that illustrate this.

 Solenoid valves can be operated either 
on AC or DC, but for automated instrument use, only DC should be 
considered, since when driven with AC you will get a 50Hz buzz 
enriched with overtones from each of them...

A note on conical valves:

As noted above, the use of conical valves becomes mandatory if one 
wants to implement fine individual note aftertouch in windblown 
instruments. Since the solenoids to be used have a limited trajectory of 
movement (Tr) and proper design entails that the surface of the inlet 
orifice should equal the surface of the valve outlet (the surface of a 
cone segment or the side surface of a frustum) when fully opened, it 
follows that the angle of the cone becomes an essential design 
parameter. To facilitate calculations, we provide the essential design 
equations below:
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The technical problem here is in the construction of the valve seating, 
rather than the valve cones themselves. The latter can be fabricated 
easily on the lathe or purchased from sources such as A.Laukhuff. The 



smaller the diameter, the smaller the angle, and they can be ordered in 
7 different diameters. But in order to make the conical holes in the 
windchest one will face the problem of milling holes to these exact 
angles, not conforming to standard available conical mills. Most of the 
time it cannot be done on the lathe for the shapes of regular 
windchests (solid plates of wood or a synthetic material) make it 
impossible. If you do not have a CNC milling machine, the only 
solution we have found was to use custom-made mills that can be used 
in a regular drill. This tends to be very expensive. So far we have only 
taken this route for our <Bomi> robot, for which we used five custom-
made mills. Of course, once you have a set of suitable mills made, the 
tools can be used for many more robots and the price will come down 
proportionally.

Here, as an example, is the result of the calculations as performed for 
the construction of the conical valves in our <Bomi> robot, using 
A.Laukhuff cones. The last two columns give the result of the 
calculations if flat valves had been used - for the same orifices: the 
regulation superiority of the cones will be obvious.

cone 
diameter

top 
angl
e

trajectory

diameter 
of 
equivalen
t orifice

flat pallet trajectory

35mm / 
15mm

110° 5.2mm 10 mm >=15mm 2.5mm

25mm / 
12mm

100° 5.0mm 7 mm >=10.5mm 1.75mm

20mm / 
11mm

85° 6.0mm 5 mm >=7.5mm 1.25mm

16.5mm 
/10.2mm

81° 6.0mm 4.3 mm >=6.7mm 1.1mm

13mm/ 
8.7mm

72° 6.0mm 3 mm >=4.5mm 0.75mm

•

The diameter of the equivalent round orifice should be taken such as 
to correspond to the diameter of the inlet of the organ pipes used. By 
increasing the trajectory a bit, adjustments to the exact sizings of the 
pipe feet are possible. For Laukhuff pallet valves, the maximum 
possible trajectory is 10 mm. If you take a trajectory that is too small, 
resolution of the regulation possibilities will suffer. In our designs 
using these solenoids we limit the traject to about 5 mm, a 
compromise between smooth regulation and speed of response. When 
performing the calculations, one should be sure to choose the 
equivalent orifices such that they are about 10% larger than the 
diameters of the wind inlets of the pipes, in order to compensate for 
losses due to curvatures, turbulencies and roughness of the valve 
surfaces in the windway.
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In general, the sharper the top angle of the cone, the smoother the 
regulation will be, but also, the larger the required trajectory. Thus one 
should always try to use the sharpest possible cone for the maximum 
possible traject.

To facilitate these calculations we wrote a small computer program to 
generate useful lookup tables. The program can also be used for flat 
valves, if you specify the top angle as 180°. From comparison of the 
generated data, it will immediately become clear why flat valves make 
poor regulators but great switches. It can be downloaded freely. (4) 
Here is a table with some calculated results. The numbers colored red 
reflect the values for standard conical valves available from 
A.Laukhuff. The numbers in orange are the results for flat valves 
operating on the same orifice as the corresponding conical valve.

angle trajectory orifice cone diam >= flat diam >= flat trajectory

170 3 68 68.6 102 17

170 4 90.7 91.4 136 22.7

160 3 33 34 49.5 8.25

160 4 44 45.4 66 11

160 5 55 56.7 82.5 13.8

160 6 66 68 99 16.5

130 3 10.6 12.9 15.8 2.64

130 4 14.1 17.2 21.1 3.52

130 5 17.6 21.4 26.4 4.4

130 6 21.1 25.7 31.7 5.28

120 3 7.79 10.4 11.7 1.95

120 4 10.4 13.8 15.6 2.6

120 5 13 17.3 19.5 3.25

120 6 15.6 20.8 23.4 3.9

110 3 5.75 8.57 8.62 1.44

110 4 7.67 11.4 11.5 1.92

110 5 9.58 14.3 14.4 2.4

110 6 11.5 17.1 17.2 2.87

100 3 4.2 7.15 6.29 1.05



100 4 5.59 9.53 8.39 1.4

100 5 6.99 11.9 10.5 1.75

100 6 8.39 14.3 12.6 2.1

90 3 3 6 4.5 .75

90 4 4 8 6 1

90 5 5 10 7.5 1.25

90 6 6 12 9 1.5

85 3 2.51 5.5 3.76 .627

85 4 3.34 7.33 5.02 .836

85 5 4.18 9.16 6.27 1.04

85 6 5.02 11 7.53 1.25

81 3 2.16 5.12 3.24 .54

81 4 2.88 6.83 4.32 .72

81 5 3.6 8.54 5.4 .9

81 6 4.32 10.2 6.48 1.08

80 3 2.08 5.03 3.12 .52

80 4 2.77 6.71 4.16 .693

80 5 3.47 8.39 5.2 .867

80 6 4.16 10.1 6.24 1.04

72 3 1.51 4.36 2.26 .376

72 4 2.01 5.81 3.01 .502

72 5 2.51 7.26 3.76 .628

72 6 3.01 8.72 4.52 .753

70 4 1.84 5.6 2.76 .461

70 5 2.3 7 3.46 .576

70 6 2.76 8.4 4.15 .691

60 4 1.15 4.62 1.73 .289

60 5 1.44 5.77 2.16 .361



60 6 1.73 6.93 2.6 .433

 

Although conical valves allow for a much better flow control than flat 
valves, both types show a linear characteristic within their trajectory 
of movement. The difference is that the steepness of the curve is much 
lower in the case of conical valves. Trajectories other than linear ones 
are conceivable and possible: one could use ball valves, parabolic or 
hyperbolic, thus realising all sorts of trajectories that can be described 
in a second degree equation. We have never gone that far in practice, 
because we do not have access to the required machinery to make the 
valves and their seats. Only spherical mills as well as a wide variety of 
balls are readily available. Here is the required maths relating to the 
calculation of ball valves: 



 
It will be clear that as one increases the diameter of the ball, we come 
closer to the behaviour of a flat valve. Thus, for optimum regulation 
the ball diameter should be as small as is practical, but larger of course 
than the orifice to be regulated. The mechanism used for the sound 
generation in version 2 of our <So> robot, an automated sousaphone, 
makes use of a spherical valve to control the mouthpiece.



A note on tap-tones in organs and wind instruments with fingerholes:

Unrelat
ed to the regulation characterics, there is another say for the use of 
conical valves in organ windchests. Particularly when applied in 
'digital' on-off switching, conical valves make a lot less noise that flat 
valves. From an aerodynamic point of view it seems evident that 
cones will reduce turbulencies around the edges of the windpath. But, 
this is not the main reason why we got to prefer cones. A flat pallet, 
on closing the windinlet to the pipe, causes the cilindrical bore of the 
windchest upperplate coupled to the wind channel in the pipe foot, to 
resonate. The closing action of the valve is solely determined by the 
spring force of the return spring. Much like what happens if we tap 
with our flat hand the open end of a piece of pipe. This leads to a quite 
noticable pitched percussive sound, a tap-tone in pitch completely 
unrelated to the pitch of the organ pipe. By applying conical valves, 
this unwanted sound can be reduced considerably. This tap-tone is 
typical for pallet valve switched pipes and does never arrise in 
traditional mechanical organ building, where sliders in the windchest 
are used to switch the notes. These sliders inherently have a relatively 
slow attack and decay, which counts for their inferiour clarity of 
speach when compared to flat valves.

2.5.: Very fast air pressure modulation: 

The best (and cheapest) technique to achieve this in instruments 
operating under an air pressure not exceeding 200 mm H20 (20 mBar), 
is through large bass loudspeakers placed inside the windchest. These 



make very good tremulants as well.

We have been using loudspeakers as valves, air pressure modulators 
and even compressors since the early seventies. Since loudspeakers 
are moving coil devices by design, the low moving mass is 
responsible for their excellent responsiveness. Note that the 
loudspeakers are driven with sub audio frequencies (and even pure DC 
if used in a valve) in these applications. In any case, one should stay 
way below the resonant frequency of the loudspeaker.

You can even take this design a step further by using the speaker as a 
vibrating membrane coupled to a resonator, thus coming close to the 
diaphane register found in some 19th century pipe organs. It is a good 
way to achieve strong-sounding basses in relatively small volumes. 
However, one could question here the extent to which one can still 
consider such an instrument to be 'acoustic' and not as loudspeaker-
sound driven... In any case, this does not seem to be a either/or 
question, since when properly analyzed, a continuum shows up 
between purely electronically generated sound and acoustically 
generated sound. In version 2 of our automated sousaphone <So> as 
well as in the first versions of <Bono> for instance, a moving coil 
mechanism is used to make the silicone lips vibrate against the 
mouthpiece. This modulates the air flow coming from a small 
compressor and causes resonating sound from the connected 
instrument. These instruments do sound 'faulty' notes at times and 
occasional multiphonics. But, if we drive the instrument directly with 
a moving coil compressor driver, as we did in in the first version of 
our experimental cornet <Korn>, the sound is determined to a much 
larger extent by the electric signal applied to the driver as the acoustic 
coupling to the instrument is a whole lot lower than in the first case. 
Here 'faulty' notes simply cannot occur. This last concept is therefore 
a borderline case as one could consider it to be simply a non-linear 
loudspeaker.

2.6.: Acoustic impedance convertors for a pressure-driven 
monophonic wind instrument
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When thinking through the acoustical function of wind instruments, be 
they lip-driven or reed-driven, the basic principle is always an air 
column with an adjustable resonant frequency coupled to a driver. In 
order to obtain proper resonance, the driver should not be too stiff or 
frequency- selective. It should be very low impedance since the 
resonator will convert high pressure and small amplitude at the 
mouthpiece side into low pressure and high amplitude at the point of 
contact with the surrounding air. Thus a wind flow does not appear to 
be essential for the acoustic functioning of a pressure-driven 
instrument. Human players however, can only make their lips vibrate 
(this also applies to reeds of course) by directing a windflow and using 
the elasticity of either lips or reed. If our muscles were only fast 
enough, we could play the instrument without using our lungs. This 
analysis led us to the development of sound compression motors 
coupled to properly designed acoustic impedance converters as a 
replacement for lips and reeds in wind instruments. Note that this does 
not apply to air flow-driven instruments such as flutes, which we have 
treated above. We come back to them later though. Pressure-driven 
instruments acoustically behave as resonators closed at the driven end. 
Instruments developed according to this line are:

• Ob 
• Korn 
• Heli 
• Bono (version 3) 
• Autosax (version 4) 
• Fa 
• Klar 
• Bug 
• So (version 3) 
• Flut 

If the impedance converter is well designed (the orifice ought to be as 
small as is reasonable, although this is done to the detriment of sound 
pressure), the waveform of the driving signal, provided it has enough 
partials, becomes fairly unimportant and the instrument will produce a 
sound pretty close to the sound obtained by players. 

 However, attack 
and envelope will have to be controlled by the electronic driver using 
amplitude modulation. If this is left out, the sound produced will 
invariably sound synthetic, particularly on sustained notes. In all our 
robots making use of this technology, we have implemented a wide 
range of expression controllers for this purpose. Particularly for the 
higher pitched instruments, this approach was very fruitful. The 
reason why it is so difficult to make a fully mechanical sound source 
for these instruments is that the required speed of movement and the 
mass to be moved are too high for electromagnetic devices. From this 
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constatation, it becomes logical to examine the possibilities of 
realizing the mechanical sound sources on a sub-miniature scale and 
picking up the vibrations with transducers. These signals, after 
amplification, can then be used to drive the acoustic impedance 
convertors. The resulting sound is a lot more natural than what can be 
obtained with synthesized waveforms. However, such an approach 
cannot be used if one wants to automate existing instruments. An 
alternative way to improve sound results with digital oscillator-driven 
impedance convertors consists of using audio feedback from the 
instrument and using this signal to modulate the driving signal in the 
software. This however, requires very fast processors. If the frequency 
range is limited, the acoustic impedance converter can also be 
equipped with a mirliton-like resonator in the embouchure part. Good 
results require many days, if not weeks, of experimenting with 
different materials and geometries.

Compression drivers are produced by different manufacturers either 
for use in public address sound reinforcement systems where they are 
coupled to exponential horns (megaphones), or as tweeter drivers for 
speaker systems. In fact they are like loudspeakers - moving coil 
devices - but lack a sound- projecting membrane. The specifications 
vary, with powers ranging from 5 W up to 150 W and impedances 
such as 4 Ohm, 8 Ohm, 16 Ohm, 800 Ohm etc. If you are designing 
automated instruments using acoustic impedance converters as 
described above, you should be aware of the fact that the load on the 
driver represented by the converter changes the impedance of the 
driver considerably. Also, the impedance depends on the driving 
frequency. So for example, one of the drivers we have used (a driver 
made in china rated 100W at 16 Ohm) has an impedance of 15 Ohm at 
1 kHz with no acoustic load. However, when loaded with an 
impedance converter with a long capillary, the impedance, measured 
at the same frequency of 1 kHz, rises to 32.8 Ohm. At 100Hz 
(measured impedance 11.4 Ohm) or at 10 kHz (measured impedance 
26.7 Ohm), the loading effect on impedance is substantial. These facts 
dictate the need for linearising or equalizing lookups at the generator 
firmware level or in the amplifier stages.

it is also important to understand the way compression drivers work: if 
they have a membrane with surface Sm and they are loaded with a 
horn with an orifice Sh equal to Sm, than then the compression ratio 
Sm/Sh is unity. In audio applications, the compression ratios are in the 
order of 2 to 4, meaning that the surface of the orifice of the load, Sh 
is only half to one quarter of Sm. In the interest of a natural sound, the 
compression ratio for automated instruments should be set as high as 
practical. The upper limit is where the air compression starts hindering 
the movement of the membrane too much. Taking into account these 
considerations, our decision to use a tweeter driver in our oboe robot 
<Ob>, becomes logical. The compression ratio in this robot is about 
1:25. In fact one could also approach this acoustic impedance 
convertor as a de Laval nozzle, a device for which the mathematical 
theory is very well developped. (cfr. R.Courant and K.O.Friedrichs, 
1999).

The electric signal for the compression driver can be obtained in two 
different ways: either one can make use of a suitably designed audio-
type amplifier, or one can generate the power signal directly using two 



phase- shifted PWM outputs on a dsPIC type microcontroller. In the 
last case a custom designed power output transformer (push-pull) may 
be required to match the impedance of the compression driver. 

The circuit as we used it for our automated oboe <Ob>, as well as for 
<Korn> looks like:

 
The problem we encountered with this circuit is that amplitude control 
becomes only possible by changing the duty cycle of the PWM signals 
driving the power mosfets. On low amplitudes, artifacts will become 
audible as the resolution (limited to 16 bits) of the signal goes down 
with the amplitude. This interdepency can be solved, by introducing a 
thirth PWM source driving a P-channel power mosfet in the positive 
power line driving the compressor motor, as shown in the drawing 
below:



 

Note that the base frequency of the amplitude PWM signal has to be 
well above 20kHz for good results, even with the 10mF capacitor 
present to filter out the modulation frequency. The problem with this 
circuit is that at a PWM base frequency around 100kHz, it is very hard 
to find power mosfets that switch fast enough. Also, this circuit is not 
very power efficient, as about half of available power gets dissipated 
in Rx, a high power resistor. In a preliminary version of our <Fa> 
robot Rx was taken as 15 Ohms, matching the impedance of a half 
winding of the transformer (16 Ohms). For the P-channel mosfet a 
IRF9540NPBF was choosen. Since the practical results were quite 
deceptive, we decided to get back to analog regulation, starting from 
the same 100kHz pwm signal generated by the dsPIC microcontroller. 
In the analog approach we use an LT1038 power regulator and drive 
the adjust pin with the variable resistance from a Silonex optor 
component, a combined LDR-LED. The complete circuit became:



This circuit works very smoothly although one may find it to react 
rather slowly to amplitude change commands. The linear regulator 
(LT1038) is nowadays an obsolete part in a TO3 housing, but 
alternative parts are available on the market. A LT1083 (Linear 
Technology Corporation) should work, though Umax on the input is 
limited to 30 V and maximum current is only 7.5A. We didn't check it 
at the time of this writing.

The circuit using an audio amplifier, as used for our automated valve 
trombone <Bono>, as well as for <Autosax> and <Heli> looks like:



 
Note that a transformer is used in this circuit as well. But since we 
only have to cope with small signal levels here, ordinary good-quality 
audio line level transformers readily available on the market can be 
used. Note that volume control is achieved here by using a thirth 
PWM signal to control an Optor circuit (LDR- LED combination). 
Although these components are highly non-linear, they helped us in 
avoiding artifacts on low amplitude levels. 

For our clarinet robot, <Klar>, we decided to go for a true 32 bit ARM 
processor in order to avoid artifacts in the volume control which had 
to be implemented with an extremely large dynamic range (110dB) , 
dictated by the properties of clarinets. Thus we had the possibility of 
implementing formant filters, vibrato and tremolo on the controller 
level. In this case, the power driver is an ordinary high quality audio 
amplifier.

In the <Bug> robot, finished january 2017, we used a Microchip 
24EP128MC202 16-bit microprocessor to steer the membrane 
compressor. This is the circuit:
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1. Excite the membrane compressor with a waveform (at least 4 
periods are required and these must be looped in the firmware) 
corresponding to what you would like the robot to sound like. Lets 
call it WavIn(). This waveform must be without any modulation and 
recorded in an anechoic chamber using high quality microphones at a 
distance not larger than the size of the sound source. This signal can 
best be derived from a recording of the instrument played in the 
traditional way. So, it should be recorded prior to modifications 
required to build the actual robotic instrument. Make sure you record 
sound samples for a large series of different notes in different 
dynamics and registers as excitation waveform differ greatly in 
function of these parameters.

2.- Record the sound of the robot, using a high quality microphone, 
with this excitation and convert it to a format suitable for the 
microprocessor selected. Lets call this waveform WavOut() . Make 
sure the sizes of WavIN() and WavOut() are the same and take care to 
allign the phase as well as possible. This is a quite tedious job, in 
particular for instruments where the contribution of the instrument to 
the sound result is relatively small as compared to that of the playing 
style, the mouthpiece etc. For the saxophone this is noticeably the 
case, whereas we had less problems in this respect with the oboe and 
the flute.

3.- Calculate the required excitation waveform as: WavEx() = (2 * 
WavIn()) - WavOut(), in the time domain. Normalize this wave and 
remove any DC components. This wave is a model of the excitation 
wave deprived from the influence of the instrument. Of course this 
cannot be fully true, as it doesn't take into account the mutual coupling 
of excitation and instrument. However, the model does work quite 
well on practical robots of enough waves are prepared to cover the 
dirrents registers and dynamic levels. 

4.- Reprogram the microprocessor to use WavEx() as an excitation 
waveform for as many notes and dynamics as the microprocessor can 
cope with.

This method was applied in the construction of the <Flut> and version 
3 of the <So> robot in 2020. Of course, the procedure ought to be 
performed for a note in each register the instrument is supposed to 
sound. It would be ideal -but tedious- to follow this procedure for each 
individual note. However, the microprocessor used should than have a 
very large memory. The 16 bit 24EP128MC202 types we prefer to 
use, are limited to 16kBytes, enough for a maximum of 10 wavetables, 
1024 bytes each. 

The theory behind this approach is that the excitation-wave should 
correspond as much as possible with the vibration of the lips or reeds 
that cause the vibration in the instrument. As it is nearly impossible to 
capture this vibration by direct methods, we reason that the sound 
produced by the instrument is the sum of the excitation and whatever 
the instrument adds (or omits) to it. Thus, by sending a sample of the 
normally produced sound to the membrane compressor, we should get 
the excitation wave plus twofold the contribution of the instrument. 
By calculation of WavEx() = (2 * WavIn()) - WavOut() we get a 
model of the exitation wave. When studying and analysing waveforms 
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impossible on PC's. From an audioperception point of view this is of 
course greatly exagerated a requirement for such high frequencies. 
Also, one would get in great trouble when trying to generate 
waveforms at such a high sampling rate on a microprocessor platform. 
Nevertheless, there is clearly a say for the use of as high as possible 
sampling rates. The 192 kS/s sampling rate offered on some of the 
better sound cards in PC's will lead to good results up to 1500 Hz, or 
midi note 90. This is more than enough for any practical application in 
automated instruments. As to vertical resolution, the commonly used 
16-bits are more than what we really need. So going to 24 bits is 
overkill. On the 16-bit microprocessor platforms we have used so far, 
it's already hard enough to reach a resolution of 12 bits.

Also, it is important to keep in mind that the fact that there is no 
common divider between the sampling rate and the pitch leads to 
slight detuning of the generated notes. Tuning can only be guaranteed 
to be precise if the sampling rate divided by the frequency of the note 
is an integer. As equal temperament leads to frequencies that can only 
be expressed as irrational numbers, this problem cannot be 
circumvented.

Practical application of this method are documented in the source code 
for the firmware of the robots <Flut>, <So>, <Autosax>, <Bug> and 
<Hunt>. Utilities to calculate, display and manipulate the required 
wave lookup tables are integrated in the DLL libraries of our GMT 
software.

 

3.-Instruments where the sound originates from, or is influenced 
by rotation, rotating or linear friction such as in bowed 
instruments, sirens, the rotating valves in vibraphones, the 
tremulant in reed organs etc.

Technology to be used: Frequency control of AC motors, PWM 
control of DC motors, linear motors, servos and/or stepping motors.

Example projects:

• Hurdy 
• Flex 
• Sire 
• Springers 
• Tubo 

A particularly difficult problem is encountered whenever one attempts 
to automate bowed instruments. The pressure of the bow against the 
string as well as the bowing speed have to be controlled in great detail. 
To control the pushing pressure of the bow against the string, soft-
shift magnets driven with variable DC or PWM can be used. The 
picture shows the mechanism used to achieve this in our automated 
hurdy gurdy where we use a rotating round belt as a bow.
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Note that these soft-shift magnets, although extremely expensive, are 
devices that respond relatively slowly. The forces involved here 
preclude the use of moving coil mechanisms. Pneumatic cylinders 
would be ideal here, if they didn't suffer so much from exhaust 
noises...

The rotators in vibraphones can easily be driven with 7.5 degree per 
step stepper motors. To avoid noises, it is best to drive the rotating 
shaft with a rubber or nylon belt. The same principle can be applied to 
the typical Doppler-based vibrato mechanism found on many larger 
reed organs. On the original instruments, this rotator - functionally 
very similar to the Leslie effect - is driven by a simple pneumatic 
motor. The disadvantage is that the vibrato speed becomes 
intrinsically dependent on the wind pressure and thus the sound 
volume. By replacing the pneumatic motor with a silent DC motor (we 
have used tape recorder motors for this with great success) we can 
control the vibrato speed independently. We also found that replacing 
the blades - normally made from cardboard - with more reflective 
material such as polished steel (thin Hasberg measurement blades) 
makes the entire mechanism a lot more effective.

 
The picture shows the tremulant mechanism as we made it for our 



<harmO> robot. 

In our <Tubo> robot, we used DC motors with an excentric wheel to 
move the pipe resonators over a small trajectory over and back from 
the center of the aluminum sounding tubes.

4.- Instruments where the sound originates from shaking.

Maracas, Angklungs, bells, shakers, thundersheets etc.

Bipolar electromagnets or solenoids can be used, with single pulse-
time control in both directions. Useful solenoids can be found in the 
catalogues of Kuhnke, Emessem as well as August Laukhuff, where 
they are presented as register traction magnets. Shaking frequency is 
limited to the low frequency ranges, up to about 30 Hz. For medium 
shaking frequencies, motor- driven vibrators can be used.

4.a: Bipolar electromagnets

Example projects:

• Klung (automated angklung) 
• Springers (maracas) 
• Psch (steel sheets) 
• Thunderwood (thundersheet, bamboo chimes) 
• Whisper (tiny maracas) 
• Tinti (tintinabuli) 
• Chi (orchestral chimes) 

For small objects (bells and rattles) bistable electromagnets as used for 
registration knobs in organs can be used: 

 The type shown uses two separate 
coils. By steering them with two independent PWM signals, you can 
get intermediate positions easily. For good control, a position sensor 
and a PID regulating system is required. These double solenoids are 
-by the way- also very suitable for the implementation of plucking 
mechanisms on strings if you can live with the very low force they 
deliver. For larger loads and forces, the solenoid shown in the picture 
below is suitable. Note that solenoids with higher forces - and thus 
more moving iron mass - also inherently have a much slower 
response. We used this type in <Klung>, our automated angklung. 
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 A 
type made by Emessem in the UK (since 2007 named Magnet-Schultz 
Ltd.) looks like this: 

If the shaking frequency needs to be very high or very randomized, 
once again cheap loudspeakers can be used, as we did in the rain-
mechanism in our <Thunderwood> robot. When solenoids are used, 
they should have two different windings. The choice of commercially 
available bi-directional solenoids is extremely small. For some 
applications it is possible to combine two solenoids to implement bi-
directional movement without using return springs. This is what we 
ended up with in the design for the rotary valve mechanism in our 
automated trombone: <Bono>. It is not too difficult to make bi-
directional solenoids yourself provided you have a lathe and some 
winding experience.

4.b: Motor-driven vibrators.

These devices have applications in a wide range of industrial 
processes: sieving, mixing and separation of granular components... 
They consist of a motor (generally a 1 or 3-phase AC induction motor) 
with a protruding axis on both ends onto which eccentric weights are 
mounted. By adjusting the position of the weights, the amplitude of 
the vibrations can be regulated. In applications for musical automata 
where fast shaking is a requirement, good control of rotational speed 
as well as amplitude becomes a requirement. For AC motors, standard 
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3-phase motor controllers can be used. If control of acceleration and 
amplitude is required, the same technology can be applied but one 
should preferably opt for hybrid stepping motors. Steering the 
magnitude of the motor current will yield a good control over 
vibrational amplitude whereas programming of the stepping patterns 
allows control over the vibrational wave form. In our experiments, 
shaking frequencies up to 400 Hz have proven to be possible. An 
intrinsic problem is presented by the vibrator's own resonances in 
combination with the load. Under resonance conditions, self-
destruction is easily achieved.

Commercially available AC motor vibrators are available from 
Italvibras (Italy). Type Vibtec M3/4-S02 is a monophase device with a 
centrifugal force rating of 2 to 6 kg, powerful enough to vibrate even 
the largest thundersheets. Models with much higher forces are 
available from the same source. 

The model shown on the picture weighs 850 g and has a power rating 
of 20 W. It is very quiet in operation. For variable frequency use, we 
advise using them with an amplified sine wave. Make sure the voltage 
is reduced when the frequency goes down. If a 3-phase motor has to 
be steered, following circuit gives good performance over a wide 
frequency range, in fact only limited by the possibilities of the motor::



The waveshape delivered to the load is a square wave. The phase 
relations between the outputs, as well as the frequency of operation 
are programmed in the PIC-firmware. Source code is available on 
request. For high voltage motors, IGBT's should be used rather then 
power mosfets. 

A simpler monophase motor vibrator was used in our <Chi> robot, 
automated orchestral chimes. Intensity control of this vibrator was 
implemented with very slow PWM in the PIC microcontroller steering 
an optical AC relay.

5.- Instruments usually bowed or struck, with ferromagnetic 
strings or blades.

On such instruments, electromagnetic devices can be used to control 
the excitation of the strings or steel blades very precisely. Precise 
tuning of the strings or objects is mandatory for good resonant 
operation. Moreover, the driving circuitry should have extremely 
stable as well as precise frequency synthesizing. For this purpose we 
now use Microchip 30F3010 microcontrollers. (ds-PICs). Although it 
is perfectly possible to design instruments in this category to be self-
tuning, (automated guitar tuning devices are a commercially available 
example), we have implementing such a feature in a design only once, 
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mainly because the weight of the motors involved quickly becomes 
prohibitive. 

Example projects:

• Hurdy (e-drive mechanism) 
• Aeio (two phase e-drive mechanism) 
• Synchochord (auto-tuning mechanism) 
• Flex (singing saws) 

The inherent problems you encounter here have to do with the low 
coupling factor between coil and object. The higher you want the 
excitation amplitude to be, the lower the coupling factor becomes 
because you will have to increase the distance between string or object 
and the electromagnet. The electromagnetic force is inversely 
proportional to the square of the distance... As yet we do not have an 
adequate solution for this problem and thus all the designs making use 
of this technology suffer from very low efficiency, i.e. very high 
current consumption versus sound output.

In the 12-stringed <Aeio> robot we used an electromagnetic string 
driver operating in two phases. Electromagnets are mounted on both 
sides of the string and by controlling the duty cycle of the driving 
signals, string motion can be controlled to a quite large extent. The 
result comes pretty close to a bowed string sound.
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The string driver assembly as used in the <Aeio> robot (opened up) 
looks like: 

When mounted, the electromagnets face each other: 



 
Note that the mechanical assembly should be made of a non-
ferromagnetic material. We use stainless steel (AISI304). It will be 
clear that the excitation force can be controlled by changing the 
amplitude of the excitation pulses. It is quite tempting to implement 
this by PWM-ing the pulses at the microcode sound generation level 
However, there are some caveats here, in that easily audible artifacts 
are produced, caused by the too-low carrier frequency of the PWM 
signal. A cleaner approach would be using voltage- controlled current 
sources (using LM317 variable voltage regulators for instance) for 
each of the coils. However, apart from the far greater complexity of 
the circuitry, keep in mind that the dissipation tends to be quite high.

In the string excitation diagram above, we have shown an almost 
sinusoidal movement. Such movement in practice will only be 
encountered when the excitation force from the magnets is very low as 
compared to the stiffness of the string. When we take the spring-
behaviour of the string into account, the movement shape of the string 
under excitation will look more like:



 
Notice that the zero-cross already happens in the B phase! Also note 
that the curvature in the A phase depends on the distance between 
string and magnets, on the excitation force as well the elasticity of the 
string. In any case, the wave shape thus obtained will come closer to 
that of a real bowed string, for which a sawtooth shape is generally 
assumed. 
The circuit for driving a single string of our <Aeio> robot looks like: 



 
In this case the microcontroller also steers the string damper and an 
extra string exciter solenoid.

Experiments are being conducted in using 3 separate coils driven in 3 
phases, so that the rotation of the string can be controlled better and 
the coupling factor should become a lot higher. Furthermore, the 
string driver can be made movable along the length of the string. We 
will report on the results of these experiments in due time.

For the <Synchrochord> robot, although by design its string is 
plucked by a synchronous motor mechanism, we were in need of an e-
bow like mechanism for the autotuning feature as we needed a 
resonant feedback on the string for tuning. For the string excitation we 
used a dismantled torque-motor. These motors are induction type AC 
motors with a squirrel-cage rotor. If they are made to work on single 
phase current, they have a shaded pole realised by a single turn copper 
winding in the stator. Without this they wouldn't start up. The shaded 
pole creates a delayed magnetic field. Types with two windings 
whereby one of them is phase shifted using a capacitor also exist. 
When the rotor is removed, the hole left makes a very suitable 
magnetic field for ferromagnetic string excitation if the string is 



passed through the hole.

 Note however that 
the exact center is a point of zero-force. Thus the string has to be lead 
through the hole a bit off center. Driving the windings of such a motor 
entails the design of a high voltage variable frequency power supply, 
not such a trivial undertaking. This is because such motors are only 
produced for operation on the regular power line. Details can be found 
in our description of the <Synchrochord> robot.

Obviously the problem with the low efficiency of e-drives is not 
encountered when we deal with electronically amplified instruments 
such as electric guitars. But in this article we have very deliberately 
left out the possibilities of using electronic amplification. Here we 
intend to deal exclusively with pure acoustic sound and how to obtain 
it under close control.

Another use of electromagnetic drives can be found in the control of 
reeds in single-reed instruments (saxophones, clarinets, bagpipes). 
Here we do not bring the blade or reed into resonance but, on the 
contrary, impose our vibrational mode onto the reed. In order for this 
to work, the free resonant frequency of the reed must be a lot higher 
than the highest pitch you want to generate. This dictates the use of 
pretty thick spring metal reeds and as a consequence, pretty high 
magnetizing forces. Dual coil systems operating in two phases have 
proven to be the most workable and reliable. The sound color can be 
greatly influenced and controlled by controlling the phase angle 
between the currents in both coils.

Example projects:

• Autosax (version 3) 
• Ob 

Our attempts to realize oboe and bassoon reeds this way have not been 
very successful to date, but research is continuing. We can only hope 
flexible piezoelectric material (yes, we know of Kynar, but this 
material does not work here...) becomes available one day. Acoustic 
impedance converters (as mentioned before) have given by far the best 
results so far when it comes to reed-driven instruments.
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A note on the phenomenon of frequency doubling and spectrum 
shift:

When a coil moves in the magnetic field of a permanent magnet, the 
coil will follow the AC input signal and thus the movement of the coil 
will be at the input frequency of the signal. This happens in normal 
loudspeakers. Likewise, if a coil is wound around a non-moving 
permanent magnet, the force exerted on a ferromagnetic object in the 
neighborhood (string, membrane, reed, tongue...) will strictly follow 
the frequency and wave shape of the driving signal. This happens in 
the old-style telephone receivers and early headphones used for Morse 
telegraphy. These devices typically use a U-shaped permanent magnet 
with two coils connected in series, one over each leg. In front of the 
poles of the magnet a thin, round iron membrane is placed so that it 
does not make contact with the poles. However, if a non-permanent 
core is used for the coil (or if the core loses its magnetization...), the 
frequency of the force will be twice the frequency of the input signal 
if the ferromagnetic object on which the force is exerted it not 
permanently magnetized itself. Therefore a string driver like the one 
used in <Hurdy> must be operated electrically at half the frequency 
required, since the mechanism itself will operate as a frequency 
doubler. The same applies to membranes and reeds driven by weak 
iron-core solenoids. 

 
This explains why most AC-driven buzzers designed for the mains 
voltage and frequency 50 Hz or 60 Hz, sound at 100 Hz or 120 Hz. 
Coils with permanent magnetic cores are very often used as pickup 
elements, for example in electric guitars, phonograph turntable 
cartridges and some types of contact microphones. If used as force 
output transducers, one has to realize that the AC voltage applied to 
the windings will fully demagnetize the core after a sufficient time has 
passed. Another perspective with relevance for sound producing 
devices is that you can drive a weak iron-core solenoid with a signal 



superimposed on a variable DC voltage. In many cases this gives you 
control over the spectral content of the vibrations thus produced. This 
is clarified in the drawing below:

 
It will be clear that the spectral content, both in the case of frequency 
doubling and in the DC-offset case described here, will contain a very 
large amount of very high components. If this technique is applied, it 
is important to realize that the spectrum will become dependent on 
amplitude as well. We have applied it to good effect in our robots 
<So>, <Bono>, <Korn> and <Autosax>. 

Often one will be compelled to drive the coils with square waves. 
Most of the time they will make use of PWM, but that aspect is not 
immediately relevant in this context. There is a pitfall in this case, 
which is shown in the upper drawing below:

If a bipolar square wave is used to drive a coil, the force exerted by 
the electromagnet thus formed will tend to be continuous! (Of course, 
due to the time required to build up a NS magnetic field followed by 
the build-up of an inversely polarized SN magnetic field, there will be 
a ripple in the force curve proportional to RL as well as to core 
material constants). This way it will be impossible to excite an object 



with a given frequency (apart from harmonics that will be produced as 
a consequence of finite magnetization time - the magnetic poles have 
to invert at the frequency of the signal, causing slow slopes on the 
force square wave and thus many spectral components and artifacts 
enter into the game). The square wave bipolar AC drive will lead to a 
nearly constant force with ripple on the object. This will cause high 
dissipation in the core material, leading to a very strong heating up of 
the assembly. However, if the core is a permanent magnet, this force 
will follow the frequency. In that case it will fluctuate up and down 
around the constant force of the permanent magnetic field. With a 
unipolar square wave drive, the force will follow the frequency of the 
driving voltage. If in that case (lower drawing) a permanent magnet is 
used as the core material, the force will either vary between the 
constant force of the magnet and the extra force added by the drive (if 
the polarity of the driving voltage corresponds the the polarity of the 
magnet), or else between the constant force of the magnet and the 
opposing and smaller force caused by the inverse polarization of the 
driving voltage. It follows that if permanent magnets are used as core 
material, correct poling of the excitation voltage becomes very 
important. In fact, in mechanical terms electromagnets behave a bit 
like diodes or rectifiers in pure electronics. A word or warning though: 
if you use PWM with a high frequency with substantial power on 
permanent magnet cores, demagnetization is likely to happen at a 
pretty fast rate. For those amongst you that remember that technology: 
it's like erasing heads on analog tape recorders... So if you really need 
it, it might be better to go for regular solenoids driven with a 
(variable) DC offset current. It can be done either by using coils with 
separate windings or else as shown below.

A note on solenoids and electromagnets and their freewheeling 
diodes:

Invariably one will see circuits where over each inductive load, a 
diode is placed. This diode shorts the back-EMF generated by the 
inductance when it goes from the on to the off state. The voltage spike 
produced can reach values up to about tenfold the operating voltage of 
the inductor. At switch off, the diode causes this voltage to drop with 
a current flowing through the inductor, thus extending its activation 
time. In practical terms: it slows down the action of the solenoid or 



inductor. So if you want the fastest possible response from an 
inductive device, it would be better to avoid freewheel diodes 
alltogether. It is in fact possible to go without them, on the condition 
that the driving MOSFET or IGBT is capable of withstanding 10 
times the voltage used to switch the load. Also, it must have an 
internal protection diode. 

The back EMF generated by an electromagnet when it is switched off, 
largely depends on the force it excerts on the magnetisable structure it 
is coupled to. If this structure can vibrate and has mechanical 
resonances -as in the case of all our robots using excited vibration- the 
back EMF becomes highly variable as well as unpredictable. As a 
result, calculating good values for the snubber network, tends to 
become nearly impossible. The best practice is to start from a 
calculated guess and than perform temperature measurements on the 
components involved under varying operational conditions.

6.- Plucked string instruments 

Here there are different possible approaches. The mechanism found in 
harpsichords does not lend itself very well to expression control and 
hence should by bypassed in the context of this survey. To implement 
a plectrum with precise control of the striking force (speed), a 
stepping motor driving a rotating plectrum may be used. If the 
plucking has to be repetitive (such as in mandolins), a small DC motor 
can be used as well. For dynamic control it then should be mounted on 
a motor- or soft-shift solenoid driven slide. Rotary solenoids can also 
be considered here. A type produced by Magnet-Schultz Ltd. is shown 
on the picture. Return springs can be added if required.

Although, as said earlier, in harpsichords and suchlike, attack control 
is extremely limited, in some cases it is possible to realize some range 
here, by modifying the instrument. If the jacks are found to be placed 
strictly in-line and if they all pluck to the same side of the string, the 
entire jack-assembly can be made to move over a traject of less than a 



milimeter, enough for some volume control. In our spinet robot. 
<Spiro> we were unable to realize this because the jacks were on 
alternating rows and plucked the string on alternating sides. 
Nevertheless we implemented velocity sensitity in this robot. A 
special feature of <Spiro> is that we added a muffler mechanism. It's 
simply a stroke of thick and soft felt glued to a piece of wood that can 
be pushed against strings under the action of two soft-shift solenoids. 
This gradual control over the muffler (or luth register, as it is often 
called in music literature), since we use two independent solenoids, 
allow for all gradations between low/high side and open or muffled 
and even overstressed, such that a sort of vibrato even became 
possible.

  

7.- Fretted instruments

If microtonality is to be implemented, linear motors are about the only 
reliable way to go. The linear motor moves the fret and a solenoid is 
used to push the string against the fret. Pulley mechanisms using 
stepping motors and gears lead to a lot of extra noises, comparable to 
those produced by now obsolete dot-matrix line printers. Also stepper 
motor solutions tend to behave very slowly and are inherently 
unprecise. But when the instrument has fixed frets, push type 
solenoids ought to be the first candidates. Since the force they exert on 
the string is a function of applied voltage, it is pretty straightforward 
to implement finger vibrato. This is what we implemented in our 
<Synchrochord> robot. The required force to push the string down on 
the fret in an acoustical instrument tends to be pretty large, dictating 
rather large solenoids. Due to their physical size, it is very difficult to 
implement them on smaller fretted instruments such as mandolins or 
ukulele's.

8.- Movement and gesture

Movement does not seem like an essential feature for expression 
control in musical robotics. However, we noted that exactly the fact 
that many components do visibly move, seems to be a major seductive 
element for audiences. This is not so strange, as musicians when they 
play do move as well. There are two distinguishable aspects to this: 
first there are those movements strictly related to the sound 
production. Beaters hitting, keys pressed down, rotating valves, the 
complex gestural patterns of bows on string instruments... These are 
most of the time easily implemented in acoustic robots but some effort 
at times is required from the designer to also make them clearly 
visible to audiences. On organs for instance, all valve movement takes 
place inside the windchest, normally invisible. In the <Bomi> robot, 
we solved this by designing a transparant windchest.

The second aspect is related to the gestures musicians do make and 
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that are not at all required for the sound production properly speaking. 
One might think of them as mere theatric, but it must be said that they 
contribute quite a bit to conveying musical meaning in performances. 
They allow listeners, through some form of embodiment, to follow 
musical phrasing as well as to anticipate on the course of the musical 
discourse. (cfr. Craenen, 2011). For such reasons, we have 
implemented some form of gesture in those musical robots where this 
seemed appropriate. Examples can be found in a few of our 
monophonic wind instruments:

• <Ob> 
• <Korn> 
• <Fa> 
• <Klar> 
• <Horny> 
• <Asa> 
• <Bug> 

Making the robot move, nevertheless poses often very specific 
problems. First of all, it is mandatory that the movement does not 
cause any extraneous noises. This excludes often the use of fast 
rotating stepping motors. The forces involved can be quite impressive. 
For the up and down movements in our oboe robot, <Ob>, we used a 
geared DC motor with a bipolar drive and a tilt sensor. The motor 
drives a chain to make the entire oboe assembly move. <Korn>, the 
robotic cornet, uses horizontal as well as vertical movement and here 
steppers were applied, however at the detriment of speed. The <Fa> 
robot, a bassoon, moves on a pivoting point on the base, driven by a 
DC motor and a large dented wheel segment. Here is a circuit as used 
for the <Fa> movement: 
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components of the bells down to the audible range. By modulating the 
ultrasonic carrier frequency, we can make the tintinabuli produce 
sliding pitches. Obviously, here we need a loudspeaker. Details on 
concept and realisation are available on our page on the <Tinti> robot.

This concept was driven even a step further in the realisation of our 
automated orchestral chimes: the <Chi> robot.

 

Overcoming the MIDI constraints and bottlenecks

1. The 7-bit constraint

As I have mentioned in the treatment above, for most implementations 
of expression control, we use precise time-controlled pulses. The 
minimum resolution of the timers to be used is 16 bits. Now, standard 
midi is basically a 7-bit protocol. Thus it is impossible to offer the 
finest possible resolution to the user using midi. We have to remap the 
relevant section of the useful range into the 7-bit range offered by 
Midi.

The procedure for doing so starts with determining the minimum pulse 
width at which the valve starts opening. (tmin). For percussive 
instruments, you should of course take the minimum value required 
for the hammer to just strike the object. Next determine the shortest 
pulse width at which the valve fully opens and at which a further 
increase of pulse duration no longer makes a perceivable difference. 
(tmax) Note that generally these limit values will be different from 
device to device, and from note to note. They may also shift a bit over 
time due to wear of the mechanical parts. The useful timing range is 
now tmax-tmin. Now it would seem easy enough to just remap this range 
onto the 1-127 range covered by midi. Generally speaking this hardly 
ever leads to good results. Neither the solenoids nor our ears have 
linear characteristics. The mapping should be described using at least 
a second degree equation. To find out what curve best suits a smooth 
mapping of the range, we use simple curve-fitting software (Gaussfit). 
To get good results, one should determine some 5 intermediate points, 
starting with the middle of the range.

The equation found should then be implemented into the firmware of 
the microcontroller and here obviously one will be obliged to use 
lookup tables. Firstly because most microprocessors are integer math-
based and secondly because modern microprocessors have more than 
enough memory available to store the lookups.

For ease of maintenance, we invariably implement sysex commands 
into our robots, allowing the experienced user to upload different 
lookup tables. Midi program change commands are implemented to 
choose between these.

2. The midi bottleneck

Midi as a protocol should now be considered outdated. This is mostly 
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because it is way too slow to control large instrumental setups when 
many expression controllers have to be sent. As an alternative, 
preserving some compatibility, UDP/IP can be used. This topic is 
treated in another short article. However, MIDI is still the lingua 
franca for musical instrument control and therefore we have put 
considerable effort into using it up to its extreme limits. In our robot 
orchestra we have about 62 machines so far, each listening to one or 
two midi-channels. It will be clear that this dictates the use of a 
multiport midi device, our favorite (although far from perfect) being 
the Midiman 8x8. However, even though this gives us 128 midi 
channels, it means that each machine has to handle all the interrupts 
generated by the midiflow for many other machines. This invariably 
leads to glitches, lost bytes and timing problems. To overcome these it 
is a smart idea to build dedicated midi filters outputting only the midi 
data relevant for a specific machine. Here is a possible approach, 
using a fast dsPIC 30F3010:

 
The dip-switch is used to select the midi channel to be selected for 
pass-through. The jumper (JP1) allows you to pass the first adjacent 
channel as well. This was done with our quartertone automata in 
mind, since these use two midi channels. 

A frequently occuring problem with MIDI is related to its 
implementation of the so called Midi-Thru ports. The ports output the 
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incoming midi signal after passing through an optocoupler. If the 
signal passes through more than two of these optocouplers, signal 
deterioration does occur, leading to stuck notes and missing 
commands. A proven to be good solution to this problem is 
implementing midi data as RS485, so true differential. A tested and 
worked out proposal is descibed in Midi-Soup, treating midi problems 
more in depth. 

Feedback and sensing

If the hardware is well designed, precise and reliable, it is generally 
better to do without any kind of force, position, pressure etc. sensing 
devices. Automated regulation of any parameter always comes with a 
price tag, not only financially, but more importantly, it is detrimental 
to timing precision as well as reliability. One of the most common 
mistakes amongst automaton builders and robot designers in the area 
of musical instruments is in trying to overcome deficient or poorly-
built hardware by adding sensors and regulating loops in software. 
You invariably end up with a shaky and unreliable construction, 
plagued by under and overshoot. However, there are many cases in 
good automated instrument design where you have almost no choice. 
We will give a few examples, before we delve a little further into the 
technologies and components available. 

1.- Automated rototom-playing robot: <Rotomoton>

Here we used large stepping motors to rotate the central spindle of the 
drums in order to tune them. As we built the robot, it turned out that 
the useable trajectory shifted quite a bit with the time of use. What is 
more, the trajectory turned out to be highly sensitive to temperature, 
this of course being due to the properties of the Mylar membranes on 
the drums. For these reasons we provided each motor-driven drum 
with sensors so that the beginning and end positions could be set. The 
microcontroller automatically adjusts the number of steps according to 
the signals from the sensors. First we used microswitches, but these 
had too much hysteresis and so we replaced them later with non-
contact proximity induction sensors by Pepperl+Fuchs.

2.- Automated bass accordion : <Bako>

For this robot, the bellows are driven by a trapezoidal thread powered 
by a strong DC motor. In this case we needed to provide end-sensors 
but also a PID-regulating loop for the pressure. The rotational speed of 
the motor has to adapt to the air consumption, this being dependent on 
both the number of notes played and their pitch. In this case we used a 
bipolar Freescale low-pressure sensing device to measure the current 
air under- or overpressure inside the bellows. We could have done 
without the sensors and regulating loop in this case, but that would 
entail really huge lookup tables for all the different combinations of 
notes versus dynamic level. Memory constraints as well as the 
enormous amount of work required to fill the correct values into the 
lookup nudged us into the direction of a PID-regulating loop.

3.- Quartertone organ : <Qt>
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In this case, we mounted two flap valves in the two windchest 
channels to modulate the air flow. The valves are driven by stepper 
motors. The problem was that we could not guarantee that when the 
motor stopped, the valve position would be known exactly. Therfore 
we mounted Melexis sensors onto the valve axis, such that the current 
position of the valves could be read by the microprocessor at any time. 
This made it possible to use the valves as reliable expression controls 
on the organ.

4.- Robotic cornet: <Korn>

This musical robot was designed to have movement along two axes, 
horizontal and vertical. A very strong stepping motor with a dented 
belt was used for horizontal movement. Horizontal movement is 
limited to 180 degrees. At first we had microswitches to sense the 
extremities. These were very troublesome, because the heavy mass of 
the instrument caused a lot of inertia leading to widely shifting end 
position determination as well as serious problems in debouncing the 
switches. Replacement of the microswitches by inductive proximity 
sensors did not cure all our problems. The problems with bouncing led 
us to use these proximity sensors as pure analog devices. Since most 
PIC microcontrollers have plenty of pins available that can be 
configured as 8 or 10-bit analogue inputs, there is no penalty in 
increased hardware complexity. 8-bit resolutions are more than 
enough if it comes to end-point approach detection. Using analogue 
readouts from these sensors, it became possible to control the motor 
such that it decelerates smoothly as the sensor is approached. The 
Pepperl+Fuchs NAMUR sensors work nicely on 5V power and start 
changing their analogue output at distances of approx. 6 mm, even 
though they are rated for a 2 mm trajectory only. With these sensors 
fully implemented into the firmware, we got <Korn> to move quickly 
and smoothly.

5.- Robotic oboe: <Ob>

This robot was mounted in a cradle so that it could move in a vertical 
plane over an angle of about 100 degrees. The movement is driven by 
a geared DC motor controlled by a bipolar power driver. A chain 
connects the motor with the rotating axle around which the oboe is 
allowed to pivot. Steering the motor reliably has proved to be highly 
complicated because the required motor force depends on the tilt 
position of the instrument as well as on the direction of the movement. 
Here we solved the problems by using an analogue tilt sensor by 
Penny+Giles (type STT280/60/P2), mounted on the instrument and 
read by the PIC microcontroller.

6.- Robotic clarinet: <Klar>

Here again, a cradle was used to suspend the instrument such that it 
can swing in a pendulum like fashion. A stepping motor and a Penny 
& Giles tilt sensor are used for positioning the instrument. The 
movement angle is limited by the holding torque of the motor.

As can be seen from the examples, the PID-regulating loop with 
sensors was always added because of inherent problems with the 
electromechanical devices (slip on stepper motors, temperature 
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changes) or limitations of the microcontrollers. This is not to say that 
we would tend to reject autoregulation, but only that this technology 
should not be called upon until all other possibilities have been 
exhausted. 

The latest design of our piano Vorsetzer is a good example of a 
candidate for autoregulation. The existing model, baptized <pp2> 
works to a high degree of perfection, but... it needs specific lookup 
tables for each grand piano on which you want to use it. Pianos do 
show great variation in dynamic range, in touch-mapping on loudness 
as well as in key stiffness and repetition speed. To automate the 
generation of lookup tables, we started a project allowing the 
vorsetzer-piano to become self-regulating. As sensors we use a normal 
acoustic microphone, to measure the sound output versus key-force 
input combined with a measurement of the counter-inductive voltage 
generated over the solenoids when activated. Our experiments have 
shown that this induction spike (normally always damped with a 
diode) depends to a certain extent on the mechanical resistance the 
anchor meets when pushing a key down. Thus it is related to the 
'touch' of the piano. In this project, automation is used prior to the 
actual concert, exactly as is the case with a human professional 
pianist, who will also insist on trying out a piano prior to a public 
concert. 

Under no circumstances would we use this technology to control the 
piano in the course of a performance, because the time required for the 
regulating loops to adjust well enough in real time would make the 
Vorsetzer sound very sluggish rather than responsive.

[To be completed...]

Power supplies

At first sight it may not be the appropriate place in this text to talk 
about power supplies. And indeed, there would be no need to even 
talk about them if it weren't that these 'trivial' components found in 
just about any electronic design, didn't cause us lots of trouble. If you 
are in need for a computer power supply, no problem: the market 
offers plenty of choices in switch mode power supplies, ranging from 
very low 1W power up to 1kW and more. These ready-made building 
blocks actually perform pretty well under the conditions they are 
designed for. However, if you want to use then as power source for 
fast switching solenoids or motors you are guaranteed to land in the 
space of trouble. If you take an SMPS rated for 20 A at 24 V and you 
use it to switch a (clamped) inductive load of 10A at a rate of say 
10Hz, you are asking for trouble and guaranteed to meet it. The power 
supply will start oscillating or simply give up, if you do not get smoke 
stacks coming out and see them go to electronics heaven. Analog or 
linear power supplies re-enter the world here, but confront us with 
many problems as well. Off the shelve linear power supplies capable 
of delivering current of 20 A and higher are almost unfindable on the 
market. For low currents, up to 3 A, low drop linear regulator chips 
come in very handy although the range of possible output voltages 
forms a limitation, standard voltages being limited to 3.3 V, 5V, 12 V, 
24 V mostly.
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The first question to ask whenever we are in need of a hefty power 
supply for use in robotic instruments is whether or not voltage 
stability is important. For driving stepping motors for instance, this is 
in general not important as they are basically current driven. Often an 
80 V / 6 A power supply will be mandatory, but in this case we can go 
with the simplest of all possible designs: a transformer, a bridge 
rectifier and a very large electrolytic capacitor (at least 2200uF per 
ampere of current). This recipe in general also applies to those robots 
where pulse currents of variable durations are to be delivered to 
solenoids. If the buffer capacitors are large enough, there will be no 
observable imprecission in the attack velocities.

For hold-voltages (such as in player piano's, in damper mechanisms 
etc.) we found that stabilisation of the supply voltage is a requirement. 
In such case and as long as the required voltage is below 27 V, we can 
use the TL108x series regulators switched in parallel. For each 5 A, 
we need to add a regulator in parallel. The circuit requires bulky 
heatsinks such that it will end up being about twice as large and eigth 
times as heavy, as a comparable SPMS supply.

Examples:

1. Power supply for the dampers in the clamped rod robot <Rodo> (25 
A/ 12 V)

Sometimes a high voltage DC power supply is required. The range of 
available of the shelve transformers is limited nowadays. So a TRIAC 
controlled power supply with a microprocessor for voltage regulation 
may be considered. Circuits we developed can be found on the 
webpage for our <Per> robot. If one takes special caution to safety, 
designs not using a transformer at all are very well possible.

Software and firmware for automated musical 
instruments

From the late eighties until about 1995 we controlled each of our 
robots with a different laptop computer. In that period all PCs had a 
printer port conforming to the Centronics protocol and we used this to 
control all the hardware in each robot. For automata requiring very 
precise timing control, such as velocity control on percussion-type 
instruments, or fast PWM as required for motor control, we used this 
parallel bus to program a cascade of dedicated programmable timer 
chips (Intel 82C54 type). This easily allowed us to obtain a timing 
resolution of 1 microsecond and even 100ns if running of a 10MHz 
clock. Although we used microcontrollers in many projects, in those 
days they were simply not fast enough to handle and parse the 
incoming MIDI data streams reliably. 

Even today, this solution in which programmable hardware timers are 
used to generate each timed pulse and also for periodic signals cannot 
be surpassed by simple microcontroller solutions. The reason is that 
the indispendable interrupt mechanism required to handle the 
incoming data stream (MIDI commands) causes a timing jitter of at 
least about 60 clock cycles of the processor. If the data stream flows in 
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at a neck-and-neck pace (that is every 0.32 ms) we end up with 
1875000 'lost' clock cycles a second. For a modern 8-bit 
microcontroller clocked at 40 MHz, that is about 5% of its capacity. 
Taking into account the time required to handle the data parsing, we 
quickly use up about half of the total available clock cycles. As a 
result, the best possible timing resolution for pulses will be in the 
order of 20 µs, or 20 to 200 times worse than what can be achieved 
with hardware timers. However, the hardware timer solution requires 
a lot of board space and also has problems because some kind of data 
bus has to be implemented. When many timers are involved, the 
physical size of the databus limits its maximum speed.

Nevertheless, since the picture of solutions using microcontrollers has 
changed since the beginning of the 21st century, almost all our new 
automata now make extensive use of many Microchip PIC 
microcontrollers, despite the timing precision constraints. Our favorite 
types are the 18F2520, 18F2525 (28 pins), 18F4620 (40 pins), dsPIC 
30F3010 (28 pins) and the 24EP128MC202 (28 pins). Using the 
MPLAB software provided for free by Microchip, the chips can be 
programmed in assembly language or in C. Using the Proton+ 
compiler under MPLAB it is also possible to write the firmware in 
Basic. (A free version of this excellent compiler is available under the 
name Amicus Compiler, but it is limited to the 18D25K20 PIC chip). 
The Proton Compiler is, in our opinion, the best on the market for 
now. It supports most MicroChip processors.

The first thing to be done is to write a MIDI parser based on an 
interrupt driven UART. A circular buffer must be implemented in this 
interrupt handler, since the UART hardware buffer in the chips is only 
2 bytes large. It is -with the processors considered here- impossible to 
handle MIDI input streams on a polling base without missing bytes. 

Here is the code for the interrupt handler as used on the 18Fxx chips:

 

High_Int_Sub_Start
High_Prior_Interrupt:

    If PIR1bits_RCIF = 1 Then                            
' Was it a USART1 byte Receive that triggered the 
interrupt ?
        Movlw 6                                          
' Yes. So Mask out unwanted bits
        Andwf RCSTA,w                                    
' Check for errors
        Bnz _Uart_Error                                  
' Was either error status bit set?
        USART_FSR1_Save = USART_FSR1                     
' Save FSR1L\H registers
        Inc USART_IndexIn                                
' Move up the buffer
        If USART_IndexIn >= USART_BufferSize Then        
' End of buffer reached ?
           Clear USART_IndexIn                           
' Yes. So clear _USART_IndexIn
        EndIf
        USART_FSR1 = VarPtr USART_RingBuffer             
' Point FSR1L\H to _USART_RingBuffer
        USART_FSR1 = USART_FSR1 + USART_IndexIn          
' Add the buffer position to FSR1L\H



        INDF1 = RCREG                                    
' Place the received character into the buffer
        USART_FSR1 = USART_FSR1_Save                     
' Restore FSR1L\H registers
        Retfie
_Uart_Error:
        Clear RCSTAbits_CREN                             
' Clear receiver status
        Set RCSTAbits_CREN
        Retfie
    Endif
_Timer0_IRQ:
     If INTCONbits_T0IF =1 Then
        Clear INTCONbits_T0IF                            
' Clear the Timer0 Overflow flag
        Inc Cnt.HighWord
    EndIf 
    Retfie
High_Int_Sub_End

     

The buffer (about 100 bytes is enough, since that covers an average of 
30 MIDI commands) should be allocated in protected RAM in upper 
memory. The mechanism makes use of read and write pointers to 
access this buffer. If the buffer fills up, we have to deal with a latency 
of roughly 30ms, about the maximum that is tolerable for real time 
applications. 

Since timing is very critical in the kind of applications we are dealing 
with here, we have set up a second high-priority interrupt for one of 
the timers. Although most PIC controllers in this series have 4 built-in 
timers, you have to be careful in the selection since some of them are 
used by the built-in PWM generators. Timer0 is the best choice as it 
can be programmed with a /256 prescaler. All built-in timers are only 
16 bit wide. In order to get a much wider range for velocity control in 
automata and also to make it possible to handle all sorts of slower 
periodic events (vibrato mechanisms and shakers are a good example), 
we use the timer interrupt to increment the high word in a dword 
variable used as a 32-bit counter. The lowword is a copy of the timer 
value itself. There is an obvious penalty in doing this, as these 
microcontrollers are 8-bit oriented and therefore each handling of a 
dword requires at least 4 clock cycles.

The midi parser reads incoming data from the circular buffer and 
filters out all commands implemented for the robot. Here is an 
example of the coding:

 

        Midi_Parse:                  
            If Bytein > Pitchbend_Status Then
                If Bytein > 253 Then       '254 = 
midiclock, 255= reset or no byte in buffer
                                           'midiclock 
can interrupt all other msg's...
                                           '255 had to 
be intercepted since thats what we  get when no new byte 
flows in
                    GoTo Midi_Parse_End    'throw 
away...
                Else



                    Clear statusbyte       'reset the 
status byte
                    GoTo Midi_Parse_End    'throw away
                End If
            EndIf
            If Bytein > 127 Then           'status byte 
received, bit 7 is set
                Clear statusbyte           'if on 
another channel, the statusbyte needs a reset
                Select Bytein              'eqv to 
Select case ByteIn
                       Case NoteOff_Status
                            statusbyte = Bytein
                            set noteUit    'reset value 
255. Cannot be 0 !!!
                            set release    '0 is a valid 
midi note!
                       Case NoteOn_Status
                            statusbyte = Bytein
                            set noteAan 
                            set velo 
                       Case Keypres_Status
                            statusbyte = Bytein
                            set notePres 
                            set pres 
                       Case Control_Status
                            statusbyte = Bytein
                            set Ctrl 
                            set value 
                       Case ProgChange_Status
                            statusbyte = Bytein
                            set prog 
                       Case Aftertouch_Status
                            statusbyte = Bytein
                            set aft
                       Case Pitchbend_Status
                            statusbyte = Bytein
                            set pblsb 
                            set pbmsb 
                End Select
            Else                                    
'midi byte is 7 bits
                Select Case statusbyte
                       Case 0                       'not 
a message for this channel
                            GoTo Midi_Parse_End     
'disregard
                       Case NoteOff_Status
                            If noteUit = 255 Then 
                                noteUit = Bytein 
                            Else
                                release = Bytein     
'message complete, so we can do the action...
                                If Notes[noteUit] > 0 
Then
                                    GoSub NoteOff    'do 
the required action
                                Else
                                    set noteUit      
'reset , no action
                                End If
                            EndIf
                       Case NoteOn_Status
                            If noteAan = 255 Then
                                noteAan = Bytein
                            Else
                                velo = Bytein
                                Select Case 
Notes[noteAan]      'check the look-up for functionality



                                       Case NoNote       
' = 0, disregard: not implemented note
                                           set noteAan   
' reset the note                                
                                       Case OnOff        
' =1,  case note on/off only, no pulse
                                           GoSub NoteOn
                                       Case Pulsing
                                           GoSub 
NotePulse      ' =2 , pulse only
                                End Select  
                            EndIf
                       Case Keypres_Status
                            If notePres = 255 Then
                                notePres = Bytein
                            Else
                                pres = Bytein
                                GoSub KeyPres
                            EndIf
                       Case Control_Status
                            If Ctrl = 255 Then
                                Ctrl = Bytein
                            Else
                                value = Bytein
                                GoSub Controller
                            EndIf                        
                       Case ProgChange_Status
                            If prog = 255 Then           
'single byte message
                                 prog = Bytein
                                 GoSub ProgChange
                            EndIf
                       Case Aftertouch_Status
                            If aft = 255 Then            
'single byte message
                                 aft = Bytein
                                 GoSub Aftertouch
                            EndIf
                       Case Pitchbend_Status             
'two bytes message
                            If pblsb = 255 Then
                                  pblsb = Bytein
                            Else
                                  pbmsb = Bytein
                                  GoSub Pitchbend
                            End If
                End Select
            EndIf
        Midi_Parse_End:                                  
'jump out of parser label

The 8 and 16 bit PIC controllers are very simple microprocessors and 
therefore do not have multitasking, let alone multithreading, 
implemented. This forces us to set up a multitasking system of our 
own. To this purpose we also use the 32-bit hardware timer described 
before. By examining the time counter, tasks can be scheduled with 
adequate precision. The critical issue is to spread code - in particular if 
any serious math is involved - over as many tasks as is practical. If 
this rule is not observed in coding, the automaton will suffer 
considerably from timing jitter.

Fully documented generic source code is available on request. Many 
of our webpages devoted to our robots also contain links to the 
complete source code for the firmware driving them. We do not insert 



it here, for there are frequent updates and every robot has its own 
variations on the basic firmware. Also, the details of the code depend 
quite a bit on the type of PIC processor that should run it. As a general 
rule, we avoid loading too many tasks and functions into any single 
controller even though there is plenty of RAM available. We prefer to 
use many processors running in parallel and each with a very small 
subset of tasks to perform. One of the many advantages of this 
approach is that when a failure occurs (6), generally only a small 
section of the robot becomes non-functional. 

Notes:

(1) Fairly complete catalogue of all our automated and other 
instruments.

(2) Composers' guide to the M&M robot orchestra

(3) More texts by the author with regard to robotics and sensors

(4) Software utility for the calculation of conical and flat valves (link 
to the source code). The compiled program (compiled with the 
PowerBasic Console compiler) is here, and requires our maths library 
g_indep.dll

(5) This survey only deals with the mechanics and control of 
expressive possibilities in automata: the expressive use of such 
automata in music is a completely different story. That story is told in 
part in my composition teaching, my lectures, my composition 
software projects (GMT) and in my articles on sensor technologies 
used to translate the expressive properties of human gesture into data 
that can be used to control automata and other sound-generating 
devices.

(6) Needless to say, the firmware should be properly debugged and 
tested before any automaton is passed into the hands of users and 
composers. Nevertheless failures unrelated to simple bugs do occur 
every so often. The most common failure we have encountered is 
latch-up conditions on the part of the PIC controllers. A complete 
separation of the power supply for the controllers from any controlled 
circuitry and attached devices seems to be mandatory. VDRs as well 
as protection diodes on all input pins carrying signals from remote 
sensors or circuitry seem to help out as well (Ellison, 2009). Earth 
returns have to have as low resistance and impedance as possible. To 
achieve this we often use 3 mm-thick red copper bars for common 
earth connections

This survey was first written and published in 1987. It undergoes 
continuous updates as our research and experience in this area 
expands and progresses. Feel free to reference it, but please always 
link to the original source.

Credits & Acknowledgments:

The firmware for a few of the Microchip PIC based controllers in the 
robots and automata described here was developed in close 
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collaboration with the engineer Johannes Taelman. The MPLAB 
platform, provided by Microchip, was used.

Many experiments on electromagnetic devices have been carried out 
with the assistance of Ph.D. student Troy Rogers. Shaking devices 
were researched in collaboration with Ph.D. student Laura Maes.

Part of the research results presented here were obtained thanks to the 
support of the Hogeschool Ghent, School of Arts, where I have been 
employed up to 2014 as a full- time post-doctoral researcher, paid 
70% of a normal wage however. Now the research goes on under the 
auspices of both the Orpheus Institute and Ghent State University.

Thanks to the Logos Foundation, up to 2016 funded by the Flemish 
Government, where my instrument building workshop and electronic 
research lab are based. They also provide me with all the facilities to 
bring this research to artistic and presentable results. Since 2017 
Logos Foundation lost all it's funding due to corruption in the advisory 
boards and thus all research is now paid for by the author solely. 

Manufacturers of electromechanical devices discussed here:

• August Laukhuff Gmbh [stopped in 2021] 
• Heuss Gmbh 
• Kuhnke Gmbh 
• Tremba Gmbh 
• Lucas Ledex, now: Saia Burgess: http://www.saia-burgess.com 
• Black Knight Ltd. 
• Emessem Solenoid Company Ltd. , now: Magnet-Schultz Ltd. e-mail: 

sales@emessem-solenoid.co.uk. 
• Algoet Veren NV: this is the factory where we have our springs made to 

our specifications. 
• Sowter Transformers Ltd. This is where we have our custom power 

transformers wound. 
• Oxford Transformers Ltd. (Line level audio transformers) 
• Italvibras (vibratory motors) http://www.vibtec.com. e-mail: 

sales@vibtec.com 
• Pyleaudio (compression drivers): http://www.pyleaudio.com 
• Lanoye Bvba: custom-made mills for the construction of conical valve 

seatings 
• Penny+Giles, tilt sensors: +44(0)1202409409. 
• Pepperl+Fuchs, inductive proximity sensors. 
• Siemens, Sinamics motor controllers

Software Packages used for robot development and testing: 
• MPLAB (Microchip) 
• Positron Compiler (both 8 and 16 bit processors) 
• PowerBasic Windows Compiler 
• PowerBasic Console Compiler 
• PD 
• Windows 11 (Microsoft) 
• GMT (Logos Foundation) 
• Sonar / Cakewalk (Twelve Tone Systems) 
•
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